
History, Theory, and Serial Optimization
of the

Advanced Encryption System

by
Liam J. Cates

A Senior Project
presented to the Faculty of the Computer Science Department

College of Engineering
California Polytechnic State University, San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree of
Bachelor of Science

supervised by
Dr. Chris Lupo

Computer Science Department Chair

September, 2019

© 2019 Liam James Cates

Dedicated to the

Katz Family

for their support, mentorship, and love

© 2019 Liam James Cates

Table of Contents

Table of Contents 1

Figures 4

Tables 6

Introduction 7

Part 1 : A Brief History of the Advanced Encryption Standard 10

Section 1 : Binary Data

1.1 : The Binary Numeral System 11

1.2 : Conception of the Binary Numeral System 13

1.3 : Popularization of Binary Data 15

1.4 : The Definitions and Standards for Collections of Binary Data 17

1.5 : Modern Data and Its Security 20

Section 2 : Modernization of Cryptography

2.1 : The End of Security by Obscurity 23

2.2 : The Key to Cryptography 25

2.3 : Cryptographic Primitives 27

2.4 : The One Time Pad 30

2.5 : Perfect Secrecy 32

2.6 : Key Issues With The One Time Pad 34

Section 3 : Symmetric Key Cryptography

3.1 : The Data Encryption Standard 36

3.2 : Symmetric Key Definitions 38

3.3 : Symmetric Block Cipher Design 40

3.4 : Key Management 44

3.5 : The Advanced Encryption Standard 48

1

Part 2 Mathematical Techniques of the Advanced Encryption Standard 50

Section 4 : Set Theory

Section 4.1 : Establishing Sets 51

Section 4.2 : Operations on Sets 53

Section 4.3 : Properties of Set Operations 55

Section 5 : Number Theory

5.1 : Introduction to Modular Arithmetic 56

5.2 : Divisibility 57

5.3 : Congruence Relation 59

5.4 : Modular Arithmetic 61

5.5 : Exclusive OR 64

5.6 : Polynomial Arithmetic 66

5.7 : Matrix Multiplication 69

Section 6 : Abstract Algebra

6.1 : Algebraic Structure 71

6.2 : Groups 73

6.3 : Cyclic Group 79

6.4 : Isomorphism 81

6.5 : Ring 82

6.6 : Fields 85

6.7 : Finite Fields 87

Section 7 : Galois Field Arithmetic

7.1 : Prime Fields 88

7.2 : Extension Fields GF(pn) 90

7.3 : Representation GF(pn) 91

7.4 : Rules of Arithmetic GF(pn) 92

7.5 : Representation GF(2n) 96

7.6 : Addition GF(28) 98

7.7 : Multiplication in GF(28) 99

7.8 : Polynomials with Coefficients in GF(28) 100

2

Part 3 A Specification of the Advanced Encryption Standard 102

Section 8 : Notation and Conventions

8.1 : Inputs and Outputs 103

8.2 : Arrays 105

8.3 : The State 107

8.4 : The Substitution Box (S-box) 110

Section 9 : Functions

9.1 : Cipher 114

9.2 : KeyExpansion 116

9.3 : SubBytes 118

9.4 : ShiftRows 120

9.5 : MixColumns 122

9.6 : InvMixColumns 126

9.7 : AddRoundKey 130

9.8 : InvCipher 132

Section 10 : Block Cipher Modes of Operation

10.1 : Probabilistic Encryption 134

10.2 : Padding 136

10.3 : Electronic Codebook (ECB) 138

10.4 : Cipher Block Chaining Mode (CBC) 140

10.5 : Counter Mode (CTR) 142

Conclusions 144

Work Cited 146

3

Figures
Part 1
Figure 01 : Symbolic Representations of Binary 10100110
Figure 02 : Binary Signal Modulation (Mcanet 2009)

Figure 03 : A taxonomy of cryptographic primitives (Menezes Van Oorshot & Vanstone 1997 p. 5)

Figure 04 : One Time Pad Encryption
Figure 05 : One Time Pad Decryption
Figure 06 : One Time Pad Possible Message
Part 2
Figure 07 : Polynomial Addition (Dong 2010 ch04s02)
Figure 08 : Polynomial Subtraction (Dong 2010 ch04s02)
Figure 09 : Polynomial Multiplication (Dong 2010 ch04s02)
Figure 10 : Polynomial Division (Dong 2010 ch04s02)
Figure 11 : Polynomial Division with Remainder (Dong 2010 ch04s02)
Figure 12 : Matrices A, B, C (Wiki 2002)

Figure 13 : Matrix Multiplication Procedure (Bilou 2010)

Figure 14 : Matrix Multiplication Values (Wiki 2002)

Figure 15 : Addition in ℤ 12
(Jackson 2017 p. 7)

Figure 16 : 2x 2 +x 4 ≡ 0 mod (x 2 -1) in GF(3)|2 (Dong 2010 ch04s02)
Figure 17 : AES Word Multiplication Equations (NIST 2001 p. 13)
Figure 18 : AES Multiplication Matrix (NIST 2001 p. 13)
Part 3
Figure 19 : AES State Transformation
Figure 20 : AES Key Array
Figure 21 : AES S-Box Transformation
Figure 22 : AES Transformation Example
Figure 23 : AES InvS-Box Transformation
Figure 24 : Cipher Pseudocode
Figure 25 : Cipher code
Figure 26 : Key Expansion Pseudocode
Figure 27 : Key Expansion code
Figure 28 : SubBytes Pseudocode
Figure 29 : SubBytes Code
Figure 30 : SubBytesTransformation
Figure 31 : SubBytes and InvSubBytes Example
Figure 32 : ShiftRows Pseudocode
Figure 33 : ShiftRows Code
Figure 34 : ShiftRows Transformation Diagram
Figure 35 : InvShiftRows Transformation Diagram
Figure 36 : MixColumns Pseudocode
Figure 37 : MixColumns Code
Figure 38 : MixColumns Matrix Multiplication (NIST 2001 p. 18)
Figure 39 : MixColumns Multiplication Equations (NIST 2001 p. 18)
Figure 40 : InvMixColumns Pseudocode
Figure 41 : InvMixColumns Code
Figure 42 : InvMixColumns Matrix Multiplication (NIST 2001 p. 23)
Figure 43 : InvMixColumns Multiplication Equations (NIST 2001 p. 23)
Figure 44 : AddRoundKey Pseudocode
Figure 45 : AddRoundKey Code
Figure 46 : AddRoundKey Transformation Diagram
Figure 47 : InvCipher Pseudocode
Figure 48 : InvCipher Code
Figure 49 : Original Image (Kuo-Tsang Huang Chiu Shen 2013 p. 18)
Figure 50 : ECB Mode Output (Kuo-Tsang Huang Chiu Shen 2013 p. 18)
Figure 51 : Secure Mode Output (Kuo-Tsang Huang Chiu Shen 2013 p. 18)

4

Tables
Part 1
Table 01 : Representation of Binary { } 01001101
Table 02 : Harriot's Binary
Table 03 : Bacon's Cypher
Table 04 : Leibniz' Binary System
Table 05 : Prefixes for multiples of bits (bit) or bytes (B)
Table 06 : " Specific units of IEC 60027-2 A.2 and ISO/IEC 80000 " (Wiki 2001)

Table 07 : The English Alphabet as an Indexed Cyclic Set

Part 2
Table 08 : Injective, Surjective, Bijective Functions
Table 09 : XOR Values
Table 10 : Properties of Integer Addition and Multiplication (Dong 2010 ch04)
Table 11 : Properties of Integer Modulo n Addition and Multiplication (Dong 2010 ch04)
Table 12 : Properties of Coprime Integer Modulo n Addition and Multiplication (Dong 2010 ch04)
Table 13 : Modulo 5 Addition
Table 14 : Modulo 5 Additive Inverses
Table 15 : Modulo 5 Multiplication (Dong 2010 ch04)
Table 16 : Modulo 5 Multiplicative Inverses
Table 17 : Addition F (2)G
Table 18 : Multiplication F (2)G
Table 19 : Addition modulo x 2 +1 (Dong 2010 ch04s03) F (3)G 2
Table 20 : Multiplication modulo x 2 +1 (Dong 2010 ch04s03) F (3)G 2

Part 3
Table 21 : Hexadecimal Conversion (NIST 2001 p. 8)
Table 22 : Indices for Bytes and Bits (NIST 2001 p. 9)
Table 23 : AES S-Box Lookup Table (NIST 2001 p. 16)
Table 24 : AES InvS-Box Lookup Table (NIST 2001 p. 22)
Table 25 : Values for constant multiplication by 9 under F (2)G 8
Table 26 : Values for constant multiplication by 11 under F (2)G 8
Table 27 : Values for constant multiplication by 13 under F (2)G 8
Table 28 : Values for constant multiplication by 14 under F (2)G 8

5

Introduction

This report guides the unacquainted reader to develop an understanding of the context,
foundations, and mechanism implemented by the world's most widely used cryptographic
system, the Advanced Encryption Standard (AES). There is quite a lot of ground to cover and
we shall attempt it with a high degree of efficiency. What follows is an overview of the 3 parts
that comprise this report along with constituent sections.

Part 1, A History of Symmetric Key Block Ciphers, provides a functional understanding of the
fundamental properties, background, and historical context of the AES.

Section 1, Binary Data, focuses on the format of the inputs and outputs utilized by all digital
processes, including those of the AES. The section introduces the process of data expression
via binary numeral systems, the conception of this methodology, its initial applications,
contemporary definitions and standards, modern representation, and then transitions into the
topic of data security by cryptography.

Section 2, Modernization of Cryptography, explains two concepts that propelled cryptography
from a secretive art to a modern science: the shift away from security by obscurity and system
security via the use of cryptographic keys. We then move on to a summary of modern
cryptographic study, applications, and techniques to arrive at a breakdown of the first ever
encryption method proven to be perfectly secure, the One Time Pad. We explore the practical
implications, and the weaknesses of this perfectly secure system.

Section 3, Symmetric Key Cryptography, addresses the modern derivatives of the One Time
Pad with great attention to Symmetric Key Block Ciphers. We explore the impact of the first
national cryptographic standard, some relevant definitions, the principles of symmetric cipher
design, and the issues of key management. Finally we become acquainted with the AES, of
which, the mathematical foundations and an example implementation are the focus of the
remainder of this report.

6

Part 2, Mathematics of the Advanced Encryption Standard, addresses the mathematical
concepts necessary for a foundational understanding of AES operations.

Section 4, Set Theory, examines the elements operated upon by the cryptographic primitives of
the AES. These systems are implemented with finite elements. Sets with which most are
familiar, such as the set of integers, are infinite. We work with a functional definition of sets,
known as naive set theory, to define unordered collections of distinct objects. A given Set is
defined by the properties of its members, whether by shared properties, or a lack thereof, such
as the set of even numbers, which share evenness, and lack oddness. Once a definition is
established, we are able to analyse a Set and determine the algebraic properties held by
relations between set members, represented by mathematical operations of varied complexity.

Section 5, Number Theory, facilitates the understanding of cryptographic algorithms through the
examination of relevant mathematical operations. Modern cryptographic primitives implemented
in both symmetric and asymmetric ciphers are based on arithmetic within a finite number of
elements. Not only is modular arithmetic a common way of performing arithmetic in a finite set
of integers, it is the method implemented by the AES. As such, understanding modular
arithmetic and its application is of fundamental importance in the context of this report as well as
in the greater scope of modern cryptographic study and practice.

Section 6, Abstract Algebra, concerns those properties that define the algebraic structures
which mathematically model the mechanisms of the AES. Through selective abstraction,
mathematicians have defined algebraic structures now integral to both pure mathematics and
the applied sciences. We shall see how the definition of a binary operation and the relation it
creates, affects the set for which it is defined. We begin from the most basic structure, a general
set for which a binary operation is defined, then progress through the individual properties
necessitated by the operations of the AES and define the algebraic structures which result as
they increase in complexity. This incremental addition of properties creates a hierarchy of
algebraic structures. Groups, rings, and fields constitute the basic hierarchy of abstract
algebraic objects and are required for the definition and understanding of the AES.

Section 7, Galois Field Arithmetic, enumerates the arithmetic operations defined for the AES.
The transformations implemented by the AES operate within the Galois Field of 256 members
known as . Within this algebraic structure we redefine the arithmetic operations of F (2) G 8
addition, subtraction, multiplication, and division such that these operations, when performed on
the underlying set, remain consistent with the behaviour expected of an infinite set. When a
system such as this has been properly defined, it allows us to perform finite field, or Galois
Field, arithmetic, that is, perform operations with finite members which adhere to arithmetic laws
consistent with a field of finite members. Due to the property of closure, maintained by the
algebraic structure of this field, we are assured that all mathematical operations defined in the
field result in an 8-bit number. Thus operands and resultants are limited to the range , ≤ i 0 < 28
represented by numbers from 0 to 255. Rigourous definition of the mathematics involved grants
an assurance of security, and the ability to keep intermediate results under 8-bits creates
substantial increases in efficiency.

7

Part 3, Specification of the Advanced Encryption Standard, defines an algorithmic specification
for the AES which includes it's notation, inputs, and outputs as well as conventions for
describing them, a full specification of the AES system which provides message confidentiality
for a cipher block under a cryptographic key, and modes of operation, which extends block
cipher security to the whole of a message.

Section 8, Notation and Conventions, defines the notation and conventions used to model and
algorithmically specify the AES. This includes the ordering and indexing of bits, bytes, and
words which comprise the AES operands, as well as descriptions of the parameters and
resultants that characterize the key expansion, encryption, and decryption routines of the AES.

Section 9, Functions, details a method by which the mechanisms of the AES' cryptographic
transformations maybe algorithmically implemented. As a key iterated product cipher, the AES
executes a number of round function iterations, on a block of plaintext bits , as discussed in
Section 3.3. E ach round transformation is executed in the same manner, with variance provided
by round values, generally called round constants and a round key. The AES is fundamentally
composed of a key schedule and a block cipher. The AES key schedule algorithm calculates
round keys and the AES cipher consists of the round function, specifically composed of four
byte-oriented transformations

Section 10, Block Cipher Modes of Operation, explores a few basic standardised block cipher
modes of operation, these procedures were developed to extend block cipher capability.
Individually, a block cipher serves to provide message confidentiality, protection from
unauthorized access. However, a block cipher is only defined for a single block size
transformation per key. In practice, the size of a message is larger than the block size, often
much larger. It is because of this that block ciphers are classified as cryptographic primitives, to
be used as a component in a secure cryptosystem. While the applications of block cipher
modes are many, the few focused by this document are procedures that allow a generic block
cipher to transform data allocations larger than a single block and achieve secure results under
a fixed key.

8

Part 1

A Brief History
of the
Advanced Encryption Standard

9

Section 1 : Binary Data

1.1 : The Binary Numeral System

All data is represented as sequences of symbols of a finite or well-defined set. (Greenlaw & Hoover 1998)
While data can be represented by any system of variance, the most abundant is the
contemporary binary system used by digital devices. (Greenlaw & Hoover 1998) A digital device
represents a singular piece of data by sequences drawn from a "binary alphabet", a term that
defines a set that contains two distinct entities. (Greenlaw & Hoover 1998) Any number can be
represented by a sequence of binary digits. (Greenlaw & Hoover 1998) Theoretically, a binary value
represents a sequence of "ON" and "OFF". (Greenlaw & Hoover 1998) Functionally, a binary 0 indicates
off while a binary 1 indicates an electrical signal or base 2 exponent that is turned on. (Greenlaw &

Hoover 1998) Table 1, below, illustrates this system using the binary value : 0100110 1

Exponent: 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0
Value: 128 64 32 16 8 4 2 1

ON/OFF: 1 0 1 0 0 1 1 0
Table 1

To derive the value of a given binary representation in Table 1, we place the binary digits in a
column. Each binary digit is then aligned with a sequence of exponentiation of the number, the
base, two, with the exponent's value beginning at 0 increasing by one as we move digit
positions from right to left. We interpret the value of the binary sequence by summing "ON"
column values, those that contain a 1 to achieve: . Thusly, any 128 2) 166 (+ 3 + 4 + 2 =
mechanism capable of two mutually exclusive states may represent a given binary value. By
example, the following binary sequences shown in Figure 1, below, are interpretable as the
value 166:

1 0 1 0 0 1 1 0
∎ ☐ ∎ ☐ ☐ ∎ ∎ ☐
y n y n n y y n
+ - + - - + + -

Figure 1

Data is measured by the bit, a basic unit of information in the field of Information Theory. (Shannon

1948) The bit is an abstraction of a logical value possessing one of two distinct states. (Shannon 1948)

10

Examples of such a system are abundant, even in nature, day and night, magnetic and electric
polarity, or the state of a neuron. In the realm of information theory, a bit is alternatively called a
shannon (Sh) . (Rowlett 2018) Claude Shannon was responsible for both developing the field of
information theory and publishing " bit" in 1948. (Shannon 1948) The definition of a shannon is derived
from the central tenet of information theory, entropy, the general concept that unlikely events
carry more information. "...if a volcano rarely erupts, then a message that it is erupting is more
informative than a message it is not erupting". (Rowlett 2018 par shannon) By definition, a message of
probability has an information content equal to shannons. (Rowlett 2018) As an example, if p p log2
the set of data symbols consists only of the 26 lowercase letters of the English alphabet, with all
strings being equally likely, then the probability of a message of length 10 is and its 1 26) (/ 10
information content is . A single shannon represents the information 0(log 26) 1 2 = 7.004 Sh 4
content of an event with probability 1⁄2, (Rowlett 2018) This means a single shannon (log 2) 1 Sh 1 2 =
defines the outcomes of a system where there is equal probability of either of two outcomes, a
theoretical coin toss, which we can represent with one bit. By extension, a bit sequence of a
given number, with all possible bit sequences being equally likely, has an information content,
expressed in shannons, equal to the number of bits in the sequence. (Rowlett 2018) For this, the unit
was originally the bit. (Rowlett 2018) Shannon credits the coinage of the "bit" unit to John W. Tukey,
who also coined "software". (Buchholz 2000 p. 69) Tukey uses "bit" as a portmanteau for "binary
digit". (Shannon 1948 p. 1)

A bit is physically represented by a two-state device; any mechanism that exists and may switch
between one of two possible states. (Shannon 1948) Two state devices have a myriad of physical
implementations in modern digital devices, as relative levels of charge or voltage, a sequence of
current pulses, or the state of a circuit. ,(Kuphaldt 2001), (AAKCT 2018) A majority of modern digital devices
use positive logic, the expression of a logical or digital value of 1 by a more positive value
relative to the representation of 0. (Kuphaldt 2001) Dynamic random-access memory uses
semiconductors to represent logical binary values via capacitors with two levels of electric
charge. (AAKCT 2018) Compact discs, Blu-ray, and other optical disc technologies encode data via
microscopic indentations on a reflective surface, called pits. (BDA 2010) One dimensional bar codes
use the thickness of parallel, alternating black and white lines to encode binary values. (Woodland &

Bernard 1949) Familiar symbology, such as alphabetic letters, numerical digits, punctuation marks,
and others rely on popular character encoding conventions to translate from the state of data
stored on a physical device to human interpretable symbols. (Greenlaw & Hoover 1998)

11

1.2 : Conception of the Binary Numeral System

Our contemporary binary encoding scheme was conceptualized in Europe during the
17th century. Thomas Harriot, an English mathematician of incredible
accomplishment (Apt 2019) , recorded the first use of a binary numeral system c. 1600
AD. (O’Connor & Robertson 2019) In fact, Harriot had, "considered working with not only binary
systems, but ternary, quaternary, quinternary, and higher systems as well". (O’Connor &

Robertson 2019 par. 3) Harriot's studies were often secretive, his results unpublished for fear
of being labeled a heretic. Records were found after his death, among 7000 pages of
notes. (Apt 2019) These notes, now housed by the British Museum, contain a page with
the information displayed by Table 2, to the right. (Shirley 1951)

1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

Table 2

In 1605, Francis Bacon, credited with inventing the scientific method (Ochulor 2011) , developed an
encoding by which the Latin alphabet could be reduced to binary sequences, (Gallup 2010) a logical
predecessor of modern encoding. Bacon’s cypher, a substitution cipher, is given by Table 3,
below. (Gallup 2010) Developing a general theory of binary encoding Bacon deduced these digits
could be represented by any abstraction, "provided those objects be capable of a twofold
difference only", offering examples such as, "by Bells, by Trumpets, by Lights and Torches, by
the report of Muskets, and any instruments of like nature". (Gallup 2010 p. 67)

A aaaaa G aabba N abbaa T baaba

B aaaab H aabbb O abbab U & V baabb

C aaaba I & J abaaa P abbba W babaa

D aaabb K abaab Q abbbb X babab

E aabaa L ababa R baaaa Y babba

F aabab M ababb S baaab Z babbb

Table 3

The first known publication of a binary system was by Juan Caramuel y Lobkowitz (JCL) a
prodigious Spanish scholar and author. (O’Connor & Robertson 2010) In 1670 JCL published an
encyclopaedia of mathematics entitled Mathesis Biceps: Vetus Et Nova. This work defined the
general principle and outlined benefits of numeric systems other than the predominant "base
10". Donald Knuth, noted American computer scientist wrote of JCL's work in The Art of

12

Computer Programming "Caramuel discusses the representation of numbers in radices 2, 3, 4,
5, 6, 7, 8, 9, 10, 12, and 60 at some length, but gave no examples of arithmetic operations in
nondecimal systems (except for the trivial operation of adding unity)." (O’Connor & Robertson 2010 par 6)

While publication of the modern binary system can be traced back to recent centuries, systems
related to binary numbers have evolved throughout various ancient cultures. Gottfried Leibniz, a
distinguished German polymath and philosopher, was specifically inspired by an ancient
Chinese divination text, the I Ching. (Smith 2008) Leibniz's fascination with binary numerals was
inspired by his theology. (Smith 2008) Leibniz interpreted depictions on the I Ching as corresponding
to 64 binary representations, from 0 to 111111. (Wilhelm & Baynes 1967) Leibniz believed this to be
evidence of the universality of binary arithmetic (Smith 2008) and symbolic of the Christian Creationist
theory " creatio ex nihilo" or "creation out of nothing". (Smith 2008 p. 450)

However, Leibniz, binary's self-proclaimed inventor, may have plagiarized. He was familiar with
the works of both Juan Caramuel y Lobkowitz and Thomas Harriot . (ALLM 2018) Thomas Harriot
demonstrated representation by a base 2 system (O’Connor & Robertson 2019) , while Juan Caramuel y
Lobkowitz worked with a variety of base values and their logarithms including base 2. (O’Connor &

Robertson 2010) Regardless, Leibniz vastly expanded both binary and formal logic through the
discovery of properties such as "conjunction, disjunction, negation, identity, inclusion, and the
empty set". (Lande 2014 p. 21) As with the present system of binary, Leibniz's used and , as is 0 1
displayed by Table 4, below. This work appears in Explication de l'Arithmétique Binaire,
1703. (Strickland 2007)

2 0 0 0 0 1
2 1 0 0 1 0
2 2 0 1 0 0
2 3 1 0 0 0

Table 4

Additionally, in 1679, during his study of binary arithmetic, Leibniz imagined a machine that
represented binary numbers by marbles, governed by a positional system of open and closed
gates which the marbles gravity. (Lande 2014) "Modern electronic digital computers have replaced
Leibniz’s gravity-driven marbles with shift registers, voltage gradients, and electron pulses, but
otherwise they run roughly as Leibniz had visualized" (Agarwal & Sen 2014 p28)

13

https://en.wikipedia.org/wiki/Juan_Caramuel_y_Lobkowitz
https://en.wikipedia.org/wiki/Thomas_Harriot

1.3 : Popularization of Binary Data

The first known application of a physical binary representation of data was by Basile Bouchon in
1725. (Heudin 2008) Bouchon developed a punched paper tape that allowed semi-automated set-up
of a textile loom. (Heudin 2008) It was not until 1804, after further developments by Jean Baptiste
Falcon in 1728 (Essinger 2004) and Jacques de Vaucanson in 1740s (Essinger 2004) , that this system saw its
first commercial success. The first widespread adoption of binary was through the use of the
Jacquard Loom. (Essinger 2004) Its inventor, Joseph Marie Jacquard, used punched cards joined to
form a loop such that individual portions of the input length could be edited. (Essinger 2004) The term
"Jacquard" refers to a modular control mechanism responsible for automating the weaving of
complex patterns, rather than a specific loom type or design. (DMS 2017) The Jacquard loom was an
international success and punch cards would go on to become an integral part of industry,
research, and government data storage for the next two centuries. (Essinger 2004)

These types of physical mediums, paper tapes and cards, theoretically represent information as
a sequence of positions, each position has either been perforated or not. (Essinger 2004) This system
thus represents series of two-state devices and is able to represent one bit of information at
each position. There is evidence of productions that used input card counts in the hundreds of
thousands, including the first digitally manufactured book, with the physical medium woven by
these looms rather than printed with ink. (Norman 2019) However, the most influential artifact,
perhaps, was a portrait of Jacquard, woven in silk, owned by Charles Babbage. Made to order
in 1839, these masterworks required 24000 punched cards and were crafted with a precision
that Babbage deeply admired “sheet of woven silk, framed and glazed, but looking so perfectly
like an engraving, that it had been mistaken for such by two members of the Royal
Academy”. (Gross. 2015 par. 3) Regarded as a "father of the computer", (Halacy 1970) Babbage is considered
to have both, invented the first mechanical computer, (Copeland 2017) as well as designed the first
programmable computer. (Copeland 2017) The design of this programmable computer, the Analytic
Engine, though conceived in 1837, was " essentially the same as that which has dominated
computer design in the electronic era ". (Swad 2019 par. 9) It was Jacquard's invention which inspired
Babbage in using punch cards to store the binary data interpreted by the Analytic Engine. (Gross.

2015)

Nearly 50 years later, punched hole binary representation was adopted by the founder of the
Tabulating Machine Company, Herman Hollerith. (Essinger 2004) In the 1880s, Hollerith was inspired
by hole-punched railway tickets which represented categorical passenger data by which
conductors, "... verified that the passenger occupying the seat was in fact the same who had
originally presented the ticket". (CPRR.org 2014 par. 1) Hollerith developed a method of data storage on
punched cards, readable by an automated mechanical process. (Da Cruz 2001) This application was
revolutionary as all previous automated systems processed instruction lists, such as the

14

complex procedures which directed silk spinning Jacquard looms, and not arbitrary data of the
sort Hollerith had in mind. "After some initial trials with paper tape, he [Hollerith] settled on
punched cards…" (Da Cruz 2001 par. 2) An array of spring-loaded metal pins was positioned over a card
ready for processing. A pattern of punched holes would allow a configuration of pins to "...pass
through the holes, making contact with little wells of mercury, completing an electrical circuit" (Da

Cruz 2019 par. 1) that was used to count or sort punched cards as well as ring a bell signaling a
human operator that the current card had been processed and that the next needed to be hand
fed. (Da Cruz 2019)

" Herman Hollerith was an American inventor and entrepreneur whose inventions paved the way
for the information processing industry " (Satyasikha. 2014 par. 1) Specifically, Hollerith's tabulating
machine marks a new beginning, as it was the first information processing system to
successfully replace pen and paper. (Da Cruz 2001) Hollerith's electromechanical tabulators proved
their worth by processing the data generated during the 1890 United States Census far faster
than the 1880 census. The tabulating machines reduced what had been a ten-year job to three
months, ultimately reducing 1890 taxpayers costs by five million dollars. (Da Cruz 2001) Hollerith's
company would eventually become the core of IBM, producer of the dominant mainframe
computer family, the System/360, an industry standard for the computing market during the
1960s and 1970s. (Rosenbaum 1998) IBM, "a direct descendant of the work that went on in Jacquard’s
workshop", (Essinger 2004 p192-93) forwarded the ubiquity of binary data representation and processing
in both industry and government. While punched card data storage is generally obsolete,
reports show that as recently as 2012 there were still .02% of active US voting machines using
this method to record voter input as opposed to the 95% that used electronic voting machines
and optically scanned paper ballots. (ProCon 2013)

15

1.4 : The Definitions and Standards for Collections
of Binary Data

Bit collections are most commonly expressed via their byte length, a unit coined by Werner
Buchholz in 1956. (Buchholz 1956) The byte is defined to represent the arbitrary length of a bit
sequence used to encode a single textual character. (Buchholz 1962) Modern convention was
established by the preeminence of IBM’s System 360 computer line in the 1960's which utilized
an eight bit byte. (Swad 2019) Due to variance in system design, "octet" explicitly defines an eight bit
unit. (Bemer 2000) Bytes are relatively small data collections, modern computers manipulate
"words". (Buchholz 1962) "A word consists of the number of data bits transmitted in parallel from or to
memory in one memory cycle". (Buchholz 1962 p. 40) Thus, the system's structural properties define its
word size. (Buchholz 1962) Historically, system designs have had their word's data length range from
1 (Koblentz 2004) to 128 (Waterman & Asanovi´c 2017) bits with a majority of modern systems featuring lengths of
32 or 64. (Buchholz 1962)

Collections of significant magnitude are most commonly quantified by their decimal multiples as
defined by the International System of Units (SI) using prefixes appended to a given unit of
measure. (NIST 2019) The SI units are the most widely used system of measure and the international
standard for measurement. (NIST 2019) The SI prefixes are a defined series of decimal multiples of
standardized units that includes the prefixes kilo (10 3) through yotta (10 24) increment by
multiples of 1000 (10 3). (NIST 2019) 1000 bytes would be expressed as an SI unit if prefixed by k- as
kbytes to mean bytes or 1 kilobyte. (NIST 2019) The nature of the SI system is well suited to 0 1 3
count, by powers of ten , those physical quantities for which we have long used a base 10
system. However, the logical quantities used in computing are represented by a binary system
which is inherently base 2. Thus, for the purposes of computing, the SI prefixes were
misappropriated for nearby binary multiples, eg . (McCullagh 2007) In the early years, there was k = 210
no significant difference in using SI prefixes for either binary or decimal multiples. (McCullagh 2007)

 and , for example, are equal to two significant figures . (McCullagh 2007) As 024 210 = 1 000 103 = 1
computational capacities increased the absolute error between the two interpretations rose
causing issues for manufacturers and consumers alike. Ultimately, disparate prefix interpretation
culminated in significant class action lawsuits. (McCullagh 2007)

A set of binary prefixes created to solve these issues was standardized by the International
Electrotechnical Commission (IEC). The IEC is "the world's leading organization for the
preparation and publication of International Standards for all electrical, electronic and related
technologies". (IEC-W 2019 par. 2) IEC members adopt these publications as national standards.
Member and affiliate countries influenced by IEC standards compose "more than 97% of the
world's population". (IEC-W 2019 par. 2) In 1996 (IUCr 1997) , the IEC formulated its prefixes by contraction

16

https://en.wikipedia.org/wiki/Order_of_magnitude
https://en.wikipedia.org/wiki/Significant_figures

between the first two letters of the popular SI prefixes and "bi" from binary. (IEC 2005) This results in
the prefixes kibi , mebi , gibi and tebi , for which the corresponding symbols Ki, Mi, Gi and Ti were
used. (Abrahams 2000) IEC employed the same contraction system to define pebi (Pi) and exbi - (Ei) via
60027-2 Amendment 2 (1999) (IEC 2005) as well as zebi- (Zi) and yobi- (Yi) via the third edition of
IEC 60027 in 2005, thus ascribing a binary equivalent to all SI prefixes. A juxtaposition of the SI
and IEC Prefixes for multiples of bits is displayed by Table 5, below.

Decimal Binary
Value IS Value IEC

1000 10 3 kilobit kbit 1024 2 10 kibibit Kibit
1000 2 10 6 megabit Mbit 1024 2 2 20 mebibit Mibit
1000 3 10 9 gigabit Gbit 1024 3 2 30 gibibit Gibit
1000 4 10 12 terabit Tbit 1024 4 2 40 tebibit Tibit
1000 5 10 15 petabit Pbit 1024 5 2 50 pebibit Pibit
1000 6 10 18 exabit Ebit 1024 6 2 60 exbibit Eibit
1000 7 10 21 zettabit Zbit 1024 7 2 70 zebibit Zibit
1000 8 10 24 yottabit Ybit 1024 8 2 80 yobibit Yibit

Table 5

The United States National Institute of Standards and Technology (NIST) supports the ISO/IEC
"Prefixes for binary multiples" standards and hosts a website documenting their usage. (TMNT 1998)
NIST recommends "in English, the first syllable of the name of the binary-multiple prefix should
be pronounced in the same way as the first syllable of the name of the corresponding SI prefix,
and that the second syllable should be pronounced as "bee"." (TMNT 1998 par. 2) NIST has
determined that SI prefixes "refer strictly to powers of 10" and "should not be used to indicate
powers of 2". (Thompson & Taylor 2008 p. 74) In summary, the symbol for the binary digit is either bit per
recommendation by IEC 60027 and its successors, or the lowercase b symbol recommended by
the IEEE 1541-2002. (IEEE 2009) Both standards recommend the use of (o) for octet and (B) for
byte . A direct comparison of the SI and IEC Prefixes for multiples of bits is displayed by Table 6,
below.

17

https://en.wikipedia.org/wiki/Pebi_(IEC_prefix)
https://en.wikipedia.org/wiki/Exbi_(IEC_prefix)
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology

IEC prefix Representations Customary prefix
Name Symbol Base

2
Base
1024

Value Base 10 Name Symbol

kibi Ki 2 10 1024 1 1024 = 1.024×10 3 kilo k or K

mebi Mi 2 20 1024 2 1048576 ≈ 1.049×10 6 mega M

gibi Gi 2 30 1024 3 1073741824 ≈ 1.074×10 9 giga G

tebi Ti 2 40 1024 4 1099511627776 ≈ 1.100×10 12 tera T

pebi Pi 2 50 1024 5 1125899906842624 ≈ 1.126×10 15 peta P

exbi Ei 2 60 1024 6 1152921504606846976 ≈ 1.153×10 18 exa E

zebi Zi 2 70 1024 7 1180591620717411303424 ≈ 1.181×10 21 zetta Z

yobi Yi 2 80 1024 8 1208925819614629174706176 ≈ 1.209×10 24 yotta Y

Table 6

18

https://en.wikipedia.org/wiki/Kilo-
https://en.wikipedia.org/wiki/Mega-
https://en.wikipedia.org/wiki/Giga-
https://en.wikipedia.org/wiki/Tera-
https://en.wikipedia.org/wiki/Peta-
https://en.wikipedia.org/wiki/Exa-
https://en.wikipedia.org/wiki/Zetta-
https://en.wikipedia.org/wiki/Yotta-

1.5 : Modern Data and Its Security

Less than 1% of the worlds storage capacity was digital in 1986, this grew to 94% by
2007. (Leontiou 2011) The year 2002 was when humanity utilized a greater margin of digital storage,
an event considered to reflect our transition into the digital age. (Leontiou 2011) Every communication
device uses the propagation of a signal to convey the information necessitated by its
function. (Samson 1999) The term s ignal abstractly references "any kind of physical quantity that
conveys information" (Kuphaldt 2001 (1) par. 2) . Examples of signals include the varying voltage , current ,
and electromagnetic wave s used in modern digital technology. (Kuphaldt 2001) There are two types of
signals, digital and analog. (Kuphaldt 2001) While both signals propagate through the same mediums,
it is their interpretation that differs. (Kuphaldt 2001) A device that interprets analog signals does so as a
real number in a range of continuous values. (Kuphaldt 2001)

Conversely, digital devices interpret a sequence of discrete values from bands of signal
level. (Samson 1999) All signal values within a band represent one of a set of predetermined
information states. (Samson 1999) "...one of the first electronic digital computers, the Eniac. The
designers of the Eniac chose to represent numbers in decimal form, digitally… …This approach
turned out to be counter-productive, and virtually all digital computers since then have been
purely binary in design." (Kuphaldt 2001 (2) par. 4) A binary signal is a digital signal capable of only two
values, derived from the separation of the continuous signal range into discrete bands, a
process generally known as discretization. (Samson 1999) These values correspond to binary or , 1 0
and a signal is then modulated, falling into either one of the discrete bands, to represent the
value of a bit. (Samson 1999) A diagrammatic representation of binary signal discretization is shown
by Figure 2, below.

Figure 2

19

https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Electromagnetic_wave

Inherent in any sort of signal propagation is the risk of inaccurate data transfer due to system
noise. System noise is signal interference, this interference manifests as changes in the
interpretation of signal level. (Kuphaldt 2001 (3)) W hile noise always degrades the quality of an analog
signal, b ecause of the high discretization associated with a binary signal, noise of reasonable
amplitude does not leave its intended signal band, and has no effect on the signal value
interpreted. (Kuphaldt 2001 (3))

Transmission of a data signal, the communication of information from one location to another,
requires a communication "channel". The term channel is a generalization for some arbitrary
signal pathway or medium of transmission. (Stallings 2007) Transmission is of two types, guided
transmission via physical mediums (i.e. twisted-pair wire, cable, and fiber-optic cable) and
unguided transmission via broadcast mediums (i.e. microwave, satellite, radio, and
infrared). (Stallings 2007) Our digital information travels across vast networks owned by various
corporations, is hosted by countries around the world, stored on complex devices accessed by
an indefinite number of users, and will persist long after we ourselves have gone. Vast
resources are required to create a secure communication channel as the entire span would
require constant physical protection. (Van Tilborg & Jajodia 2011) Thus, the majority of modern
communication and exchange of private data, is over an insecure channel. A need for secure
communication indicates the existence of an unwanted presence, called an adversary or
attacker. (Van Tilborg & Jajodia 2011) Such presence is classified as either a passive attacker, such as an
eavesdropper, or an active attacker, such as a cryptanalyst. (Van Tilborg & Jajodia 2011)

These adversaries perform actions, such as eavesdropping, defined as "the surreptitious
monitoring of communication". (Van Tilborg & Jajodia 2011 p. 378) To defeat adversaries, such as
eavesdroppers, a signal's sender may apply countermeasures to protect the contents of
communication. The most common countermeasures come from the field of Cryptology. (Van Tilborg &

Jajodia 2011) "Cryptology is the discipline of cryptography and cryptanalysis and of their
interaction". (Van Tilborg & Jajodia 2011 p. 283) The field of modern cryptologic application consists of the
study and practical application of systems which overcome adversaries seeking to compromise
secure communication. (Menezes Van Oorshot & Vanstone 1997) The necessity of cryptography arises when the
security of information is required until authorized retrieval. This includes communications
between individuals separated by space and storage between instances in time. (Van Tilborg & Jajodia

2011)

Suppose Alice and Bob wish to share information. For this they can rely on secure
communication via cryptographic protocol, a distributed algorithm describing a procedure of
exchange for two or more parties that achieves certain security objectives. (Van Tilborg & Jajodia 2011)
Interaction via cryptographic protocol is done through the exchange of data messages. (Van Tilborg &

Jajodia 2011) We will use the term message as a general identifier for information to be transmitted.
Bank statements, medical test results, and intimate letters are among the messages Alice and

20

Bob might share privately. In the most basic case, an encryption operation performed by the
sender, and a decryption operation performed by the receiver is necessary for message
confidentiality. (Van Tilborg & Jajodia 2011) Cryptographically, decryption is the inverse of encryption. (Van Tilborg

& Jajodia 2011) Alice encrypts a private message , using an encryption algorithm , yielding the m () E
ciphertext , . (Van Tilborg & Jajodia 2011) Bob receives the ciphertext, supplies it to a c (m) E = c
corresponding decryption algorithm , and restores the message , , also known () D m (c) m D =
as the plaintext. (Van Tilborg & Jajodia 2011) The advantage of this complexity can be seen in the modern
applications of cryptography, the object of which is secure information transfer and storage.
When using a well designed and properly implemented cryptographic algorithm, an intercepted
ciphertext will contain no information to differentiate the contents of that ciphertext from truly
random bits. (Van Tilborg & Jajodia 2011)

21

Section 2 : Modernization of Cryptography

2.1 : The End of Security by Obscurity

Cryptography was first applied by the Egyptians around 4000 years ago. (Menezes Van Oorshot & Vanstone

1997) As they developed, cryptographic methods were implemented to ensure secrecy of critical
communications. Its predominant practitioners were associated with government in general,
whether military or diplomatic, e.g. spies, diplomats, military officers, and heads of state. (Menezes

Van Oorshot & Vanstone 1997) Prior to the modern age, Cryptographic application primarily consisted of
encryption. Encryption is a process that provides message confidentiality. (Paar & Pelzi 2009) The
confidentiality of a message is generally achieved by mechanisms which preclude access to
information. (Paar & Pelzi 2009) Encryption is a method of message conversion capable of transforming
information from a comprehensible form into an incomprehensible one, and back, when
necessary. (Van Tilborg & Jajodia 2011) These techniques encode messages in such a way that only parties
with secret knowledge are allowed access.

In security engineering, a dependance on secrecy of design or implementation as the primary
security mechanism is known as security through, or by, obscurity. (Paar & Pelzi 2009) The first security
expert to bring the faults of this methodology to public attention was locksmith Alfred Charles
Hobbs. In an 1851 demonstration, Hobbs displayed how even the most advanced locks were
defeated by common criminals. The public reaction assumed that exposing such design faults
would make these systems more susceptible to attack. Hobbs replied "Rogues are very keen in
their profession, and know already much more than we can teach them". (Stross 2006 par. 25) Today,
security by obscurity as a system's only security mechanism is discouraged by standards
bodies. The United States National Institute of Standards and Technology (NIST) states,
"System security should not depend on the secrecy of the implementation or its
components." (Scarfone Jansen Tracy 2008 p. 2-4)

The practices of security by obscurity oppose the modern practices of security by design
principles and open design. (Stallings 2017) A practical example of the success of these latter two
methodologies is the open source operating system Linux. Linux, arguably the most famous
example of open-source software, has never had the opportunity to use secrecy as a source of
security. (Germain 2016) Moreover, the fact that the Linux source code is widely available improves
the odds that any flaws will be found sooner and solved more efficiently, a phenomenon known
as Linus's Law. (Raymond 2000) Today, Linux is hardy, secure, and robust, with " the largest installed
base of all general-purpose operating systems". (Germain 2016 par. 5) In contrast, keeping the
specification of a widely used method classified is a near impossibility. Individual adversaries
might bribe, blackmail, or physically threaten users into explaining system details. Organizations
often experience compromise due to internal threats and it is in the interest of world powers to
seize enemy equipment, capture prisoners, and gather information through vast intelligence
networks.

22

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-123.pdf
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems

2.2 : The Key to Cryptography

During the early history of cryptography, as the secret mechanisms of cryptographic systems
became known, and security by obscurity was invalidated, new systems would come to rely
upon a variable cryptographic key. Cryptographic keys are of incredible importance to the
cryptographic transformations that use them. Without the use of a variable cryptographic keys
these algorithms can be trivially compromised. Cryptographic keys, typically manifest as unique
bitstrings, are input parameters said to specify cryptographic transformation. (Van Tilborg & Jajodia 2011)
All the operations involved in modern cryptographic message transformations are carried out in
accordance with some algorithmic mechanism. This mechanism is parameterized by a secret
key, which dictates the transformations to be enacted upon any plaintext message. Using a
unique secret key for each execution of a cryptographic algorithm allows all plaintext values,
even when initially identical, to undergo a unique set of transformations. (Gergersen 2017) Without a
variable key, cryptographic methods proceed through an unchanging set of transformations to
produce identical output ciphertext for identical input plaintext, known as deterministic
execution. (Van Tilborg & Jajodia 2011) To invert such a transformation, adversaries only need knowledge of
the algorithm used as it's execution would be deterministic, each transformation identical, and
inversion straightforward. (Van Tilborg & Jajodia 2011) When a variable key is incorporated, a unique set of
steps produces unique output based upon the key value. Thus, cryptographic keys are input
parameters which determine the output of cryptographic algorithms. In the discussion that
follows, we shall see that cryptographic keys, as miniscule bit sequences, are not only far more
easily concealed than the entirety of a cryptographic algorithm, but are simple to change once
compromised. Modern examples include the PIN of a bank account, the code to an electronic
gate, the sequence of a combination lock, the password associated with a username.

In 1883, Auguste Kerckhoffs wrote two famous articles summarizing six contemporary principles
for the design of cryptographic systems. What follows is an approximate English version: (Fabien

Petitcolas 1997 par. 3)

● The system must be substantially, if not mathematically, undecipherable;

● The system must not require secrecy and can be stolen by the enemy without causing
trouble;

● It must be easy to communicate and retain the key without the aid of written notes, it
must also be easy to change or modify the key at the discretion of the correspondents;

● The system ought to be compatible with telegraph communication;

● The system must be portable, and its use must not require more than one person;

● Finally, given the circumstances in which such system is applied, it must be easy to use
and must neither stress the mind or require the knowledge of a long series of rules.

23

While these principles are no longer of complete relevance given contemporary computational
capability, the second statement is still a fundamental concept known to cryptographers as
Kerckhoffs's principle. (Van Tilborg & Jajodia 2011) Kerckhoffs's principle can be generally understood to
mean, a system should remain secure when every detail but the cryptographic key is public
knowledge.

As all advancement in the field, this principle has been independently confirmed by other
experts. Examples of such occurrences include Shannon's Maxim "the enemy knows the
system", (Van Tilborg & Jajodia 2011 p. 675) i.e., system design should hold the assumption that adversaries
have full knowledge of a system's operation. Bruce Schneier uses Kerckhoff's principle to
support the belief that all security systems must be designed with sufficient fault tolerance such
that disclosure of system details does not prevent useability. "Kerckhoffs's principle applies
beyond codes and ciphers to security systems in general: every secret creates a potential
failure point. Secrecy, in other words, is a prime cause of brittleness—and therefore something
likely to make a system prone to catastrophic collapse. Conversely, openness provides
ductility." (Mann 2002 par. 47)

Any cryptographic security system crucially depends on secrets or it's cryptographic operations
would be straightforward to reverse. (Van Tilborg & Jajodia 2011) Modern cryptographic applications may be
implemented by hardware or software. If the security of any application depends entirely on
implementation secrecy, a compromise of that secrecy cannot be recovered. A compromised
cryptographic system is useless and requires an entirely new implementation. The time scale of
such a process is immense; design, implementation, verification, distribution, and maintenance
of a system, unique from the previous implementation, is required to thwart attackers.
Conversely, disclosure of cryptographic keys necessitates automatic key generation to replace.
This is the essence of Kerckhoffs's principle, the secrets maintained by a security system must
be those least difficult to replace when compromised.

24

2.3 : Cryptographic Primitives

Cryptologic research is supported by the fields of mathematics, computer science, electrical
engineering, communication science, information science, and physics. (Ahmed Al-Vahed 2011)(Van Tilborg &

Jajodia 2011) Cryptographic application supports the safe use of the most advanced and vital modern
technologies including chip-based EMV smart payment cards, digital currencies, e-commerce,
user authentication, secure data storage, secure network connections, and remains the leading
approach to maintain classified military and government intelligence. (Ahmed Al-Vahed 2011)(Van Tilborg &

Jajodia 2011) Cryptographic applications are primarily expressed as branches of engineering. (Ahmed

Al-Vahed 2011) Most typically, engineering applications contend with the passive, neutral forces of
nature. (Ahmed Al-Vahed 2011) The fields of cryptography and security engineering deal with the active,
malevolent opposition of adversaries and attackers. (Ahmed Al-Vahed 2011)

In recent decades, the field has expanded beyond preservation of confidentiality. Modern
cryptologic methods include techniques for data confidentiality, integrity preservation,
authentication, identification, and access control, non-repudiation, interactive proofs, and secure
computation in general. (Menezes Van Oorshot & Vanstone 1997) Each of these objectives are achieved
individually by the proper cryptographic primitives.

A cryptographic primitive is a function that performs a fundamental cryptographic operation.
Such functions are manifest as computer algorithms. Cryptographic primitives compose the
basic building blocks of modern cryptographic systems. As fundamental components,
cryptographic primitives are the foundation upon which security tools of greater complexity
depend.

Example Cryptographic Primitives (Van Tilborg & Jajodia 2011)

Symmetric key
provides message confidentiality using a single key for encryption and
decryption.

Public key
provides message confidentiality using a key pair, a public encryption key and
a private decryption key.

One-way hash
functions

provides message integrity by computing a unique hash value.

A general taxonomy of cryptographic primitives is given by Figure 3 below.

25

Figure 3

Each primitive must be profoundly reliable, performing in exact accordance to their specification.
Due to this critical necessity, a significant amount of cryptologic research concerns the design
and function of cryptographic primitives. Creation of cryptographic primitives is a complicated
process; design, development, and verification to establish dependability takes considerable
time. Among the reasons are Insufficient experience anticipating the theoretical and practical
considerations involved, time consuming and error prone design processes, even for content
experts, as well as the fact that completed algorithms require thorough, rigorous testing by the
cryptological community. (Lafourcade 2013)

26

Successfully withstanding third party review gives some confidence that an algorithm is indeed
secure enough for practical use. (Lafourcade 2013) Currently, extensive public review and cryptanalysis
are currently the only method by which we can achieve a sufficient level of confidence,
exhaustive proofs of security for an entire system are generally not feasible. (Lafourcade 2013) As such,
it is highly insecure and resource inefficient to implement our own cryptographic primitives.
"Several cryptographic primitives thought to be proven secure by their authors have been
broken several years later, due to errors in the original proofs". (Lafourcade 2013 p. 7) This is of critical
importance to security as any cryptographic system or protocol found to include a faulty
cryptographic primitive would be, consequently, susceptible to attack.

Cryptographic system designers rely on publicly reviewed primitives, designed to precisely
execute a single, specialized cryptographic operation. Cryptographic primitives are quite limited
as each exactly defines one specific function. One or more cryptographic primitives are linked to
develop processes of greater utility and complexity, known collectively as a cryptographic
system, or cryptosystem . (Van Tilborg & Jajodia 2011) Cryptosystem structure often involves exchange of
secure messages. (Van Tilborg & Jajodia 2011) Such cryptosystems are called cryptographic protocols as
they define a method of exchange between two or more entities which fulfill a specified security
objective. (Van Tilborg & Jajodia 2011) While cryptographic primitives and protocols both define methods of
satisfying a security objective, primitives describe actions taken by one entity, whereas protocols
describe the exchange between multiple. (Kotzanikolaou & Douligeris 2006) An example of a relevant
cryptographic protocol is Transport Layer Security (TLS), a cryptographic protocol used to
secure web (HTTPS) connections. (Van Tilborg & Jajodia 2011) Cryptographic protocols are used as
cryptographic system components. In general, a cryptographic system consists of multiple
cryptographic primitives and/or cryptographic protocols. (Van Tilborg & Jajodia 2011) In its entirety, a
cryptosystem is a relationship consisting of an encryption method, a decryption method, and a
well-defined sets of related plaintexts, ciphertexts, and cryptographic keys. (Van Tilborg & Jajodia 2011)

Cryptosystems provide advanced functionality to guarantee the complex security assurances
necessitated by modern security requirements. (Van Tilborg & Jajodia 2011) Only when combined within a
well-defined security system, can we achieve more than a single, simultaneous security
requirement. (Van Tilborg & Jajodia 2011) Cryptographic systems, when constructed from well audited
primitives, are able to assure many high-level security objectives in concurrency. (Van Tilborg & Jajodia

2011) These systems are only as secure as the cryptographic primitives which underlie them. (Van

Tilborg & Jajodia 2011) Due to the vast complexity of modern cryptosystems, this paper focuses on the
context, mathematical properties and implementation of a single cryptographic system.

27

2.4 : The One Time Pad

The first cryptographic function proven secure through the application of Information Theory was
the One-Time Pad (OTP). (Shannon 1949) The OTP system input requires a message of arbitrary
length and a key of equal or greater length, a transformation is then performed as each plaintext
unit is combined with the key unit of corresponding location to produce the ciphertext unit. (Shannon

1949) First devised by Frank Miller for use with telegraph communications in 1882, (Bellovin 2011) this
system was individually redeveloped in 1917 by Gilbert S. Vernam. On July 22, 1919, Vernam
was issued U.S. Patent 1,310,719 for the "Secret Signaling System". (Vernam 1919) Now known as
the Vernam cipher, this method specifies use of the XOR operation to encrypt a one-time
pad. (Vernam 1919) The US National Security Agency (NSA) considers this patent "perhaps one of the
most important in the history of cryptography". (Klein 2003 p. 3) However, in this original form, the
system was insecure. Cipher operation combines plaintext units of a given location with key
material units at the same location read from a punched tape. This key material tape was
initially designed as a loop that was reused whenever it's end was reached. Joseph Mauborgne,
a US Major General and the Army's 12th Chief Signal Officer, in command of the Signal Corps,
would work with Vernam to introduce the final "one-time" system with a key that was both totally
random and at least as long as the plaintext. (Kahn 1996)

How does the system function? We first suppose Alice wishes to send a message to Bob. To
use the OTP, Alice must choose a key, typically from some collection of previously generated
one time pads. Bob must know which key she selects, a process formally called key
establishment, we will address this later in the document. Second, each unit from the pad must
be combined with the plaintext unit of the same position to produce the ciphertext unit at that
given position. The message units in this example will be letters of the english alphabet. The
combination technique selected for this demonstration assigns each letter a numerical value,
e.g., "A" is 1, "B" is 2, and so on until "Z" is 26. The numerical values of message and key letters
of equal position are added together, such that the first plaintext unit with the first key unit
through until the last plaintext and key unit are individually combined. As there are only 26
letters of the alphabet any result over 26 has 26 subtracted from it, the inverse operation, to
produce a valid result. This way, if combination values go past the end of our alphabet, the
sequence returns to A. This system is displayed by Table 7, below.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 ...

Table 7

28

The resulting numerical value of the combination of a plaintext unit and key unit at a given
position then corresponds to the output value the ciphertext digit at the same position. If the
selected pad contains the key material "WPKLM", encryption of the message "HELLO"
proceeds as shown by Figure 4, below.

HELLO → message

 8(H) 5(E)12(L)12(L)15(O) plaintext

+ 23(W)16(P)11(K)12(L)13(M) key

= 31 21 23 24 28 message + key

 5(E)21(U)23(W)24(X) 2(B) ciphertext

EUWXB → message sent

Figure 4

Alice is now able to send the secure message "EUWXB" to Bob. This ciphertext could be stored
until later or be decrypted when received. Now suppossing Bob wishes to decrypt Alice's
message, he must select the same one time pad as was input by Alice. Once this is known, Bob
uses the matching key and the inverse combination process. To obtain the plaintext, the key is
subtracted from the ciphertext and, if the resulting plaintext value is not positive, 26 is then
added to produce the correct plaintext value. With proper application, Bob successfully recovers
Alice's plaintext, the message reads "HELLO", shown by Figure 5, below.

EUWXB → message received

 5(E)21(U)23(W)24(X) 2(B) ciphertext

+ 23(W)16(P)11(K)12(L)13(M) key

= -18 5 12 12 -11 ciphertext – key

 8(H) 5(E)12(L)12(L)15(O) plaintext

HELLO → message

Figure 5

29

2.5 : Perfect Secrecy

The utility of this system becomes evident when we attempt to assess its security from an
adversarial perspective. Suppose an eavesdropper, Eve obtains the previous message,
"DTVWA". Given time significant time, Eve will surly discover key "WPKLM" produces plaintext
"HELLO", however, the key "RSBRI" would also be found to produce plaintext "LATER", as
shown by Figure 6, below.

DTVWA → message

 4(D)20(T)22(V)23(W) 1(A) ciphertext

− 18(R)19(S) 2(B)18(R) 9(I) possible key

= −14 1 20 5 -8 ciphertext - key

= 12(L) 1(A)20(T) 5(E)18(R) possible plaintext

LATER → possible message

Figure 6

As each plaintext unit is combined with an individual, random key unit, the result of each
combination operation is also independent. With sufficiently random key material, there is no
information in the individual characters or whole of the ciphertext that will allow Eve to choose
between all possible ciphertexts. Any message with the same number of characters is possible
decryption output. Though many security practitioners intuitively understood this characteristic
of the one time pad, it would not be until the 1940's that the mechanism by which the one-time
pad achieves its security was mathematically proven. (Shannon 1949)

Claude E. Shannon, known as "the father of the information age" (GBCGMV 2002 p. 10) and for
developing the study of information theory, (GBCGMV 2002) was the first to provide a mathematical
definition for the function of cryptographic operations with "perfect security". (Shannon 1949 p. 659)
While working for Bell Telephone Labs, Shannon published a classified memorandum in 1945,
"A Mathematical Theory of Cryptography". The Bell System Technical Journal published a
declassified version in 1949, "Communication Theory of Secrecy Systems". (Shannon 1949) Many
experts credit this article as the advent of modern, mathematically validated cryptography. (GBCGMV

2002)

30

Shannon was inspired during World War II to address "[t]he problems of cryptography... ...
secrecy systems furnish an interesting application of communication theory". (Shannon 1949 p. 1)
Shannon's observations concerning communication theory and cryptography developed
concurrently, that "they were so close together you couldn’t separate them". (Kahn 1996 p 439)
Shannon identified secrecy systems of two fundamental types. (Shannon 1949) One category included
those systems designed to protect against adversaries with theoretically infinite resources, time,
cryptanalysts, and, computational power, to reverse cryptographic operations. (Shannon 1949) This
category Shannon called theoretical secrecy, now defined as unconditional security. (Shannon

1949) (Van Tilborg & Jajodia 2011) The other category is composed of systems designed to protect against
adversaries with finite resources, what Shannon called practical secrecy, is now defined as
computational security. (Shannon 1949) (Van Tilborg & Jajodia 2011)

Most of Shannon's work focused around theoretical secrecy as it was he who proposed the
definition of a cipher with information theoretic or "perfect security". (Shannon 1949 p.659) After
Shannon, If a cipher was information theoretic it was determined to be "unbreakable", an
invaluable quality to be sure. (Reuvers & Simons 2013 par 1) Shannon determined that an encryption
operation has perfect secrecy if the probability that encryption algorithm , when () E
parameterized with message and key , produces a given ciphertext is equal to the m1 k c
probability that encryption algorithm , when parameterized with any other message and () E m2

, produces . k c

[E(m , k) c] P [E(m , k) c] P 1 = = 2 =

Thus perfect secrecy means any two messages are equally as likely to correspond to given a
ciphertext. (Shannon 1949) This is because, if E is a perfectly secure encryption function, for any fixed
message m , there must be, for each ciphertext c , at least one key k such that . If E(m, k) c =
this is true, an eavesdropper or other adversary can recover no information about the underlying
plaintext once the transformation has been made, as all inverse transformations are equally
likely options. (Shannon 1949)

31

2.6 : Key Issues With The One Time Pad

It has been claimed that information theorist Vladimir Kotelnikov had independently proven
perfect security in the Sovite Union. (Holden 2017) His results, rumored to have been the subject of a
1941 report which remains classified. (Holden 2017) Shannon first delivered his results in 1945,
publishing them in 1949. (Shannon 1949) Since Shannons time, one time pad ciphers have been used
to secure critical communications, but issues inherent to their operation make these systems
cumbersome. (Paar & Pelzi 2009) Use of the system requires assumptions that we will explore in more
depth now.

As a result of Claude Shannon's revolutionary observations, it was proven that perfect secrecy
is attainable using keys the same requirements as OTP keys. (Shannon 1949) This means we now
know that perfect secrecy can only be obtained with a totally random secret key whose length,
in text units, is greater than or equal to the amount of information being encrypted. (Shannon 1949)
The exact transformation achieved by the OTP, if correctly parameterized. Such
parameterization is also known as a "one time pad" or simply a "pad", i.e. any key fit for use in
an OTP transformation. (Menezes Van Oorshot & Vanstone 1997) A pad has strict requirements each of which is
a critical matter to the overall system security. If these requirements are not met, the
cryptographic operation no longer meets the strict definition of the One Time Pad. Such an
operation no longer possesses the security assurances associated with the use of the
OTP. (Shannon 1949)

As we have discussed, if the key is at least the length of the plaintext, as well as perfectly
random, used only once, and kept secret, then the system is "unbreakable". (Reuvers & Simons 2013 par 1)
This key length and perfect randomness allows each unit of the plaintext to be encrypted, or
ciphertext decrypted, by independent combination with the corresponding unit from the
pad. (Menezes Van Oorshot & Vanstone 1997) This combination uses a randomness preserving operation, such
as XOR patented by Gilbert Vernam, which we explore later in this document, in Section 5.5.
Independent combination of the input units results in the equal probability for all possible
inversion transformations. (Menezes Van Oorshot & Vanstone 1997) Thus, one time pads provide a perfectly
secure transformation of arbitrarily sized messages so long as the key material is completely
random, one time use, pre-shared, secret, of the same size as, or longer than, the message
being transformed. (Shannon 1949)

The previous examples assumes two pads, identical sequences of random letters, were
securely issued to both parties. This process is known as key distribution. (Van Tilborg & Jajodia 2011) The
first modern symmetric cryptosystems used physical key distribution. (Van Tilborg & Jajodia 2011) Methods
of the time typically involved concealable pads of paper and a pencil to perform the necessary

32

transformations. Cryptographic key material was centrally generated and stored on physical
media such as paper or magnetic tape. (Van Tilborg & Jajodia 2011) Physical distribution to was
accomplished through couriers, humorously referred to as “sneaker net”. (Van Tilborg & Jajodia 2011 p. 684)
The KGB, Russia's intelligence organization, is famous it's one-time pads, so small they could fit
in the palm of a hand, or in a walnut shell. (Smith 2007) As well, the security requirements of the OTP
system dictates that all parties involved in secure message exchange destroy key material after
use. (Reuvers & Simons 2013) This not only prevents reuse but also ensures key material does not fall into
the wrong hands. (Reuvers & Simons 2013) The KGB is also famous for its solution to this problem, their
one-time pad key material was printed on highly flammable nitrocellulose sheets which burn
quickly, without ash. (Hannan & Asif 2017)

When implemented properly, one-time pads have the strongest possible security
guarantee. (Houtven 2013) It would appear that the OTP solves the problem of perfect encryption and
the cryptographic research of the last 70 years has been rather redundant. (Houtven 2013) This is not
the case, use of one-time pads is rare due to being "horribly impractical". (Houtven 2013 p. 29)
Application of the one time pad system requires the secure distribution of key material equal in
length to the messages intended for encryption. (Reuvers & Simons 2013) This poses a problem for
message exchange of nontrivial size or frequency. One time pads are not generally practical as
it is difficult to distribute enough key bits to protect all future messages, use the proper key bits
during encryption and decryption, avoid reuse of key bits by mistake, and keep all data involved
secret. (Smith 2007) In retrospect, the OTP poses a trade-off: an information-theoretic security
guarantee or impractical key requirements. (Houtven 2013) The One time pad marks the advent of
modern cryptography, when the mathematical principles of information theory, discovered by
Shannon, would mature and become coupled with new computational abilities. Theoretical and
technological advancements since have made large strides in reducing the complexity of these
problems. The mid-1970s saw two major public (i.e., non-secret) advances. The first
advancement in modern cryptography provided a technological leap, manageable key
sizes, (Kotzanikolaou & Douligeris 2006) as well as a surge in public awareness which revolutionized the
process by which ciphers were designed. The second addressed the key distribution problem
through key exchange protocols.

33

Section 3 : Symmetric Key Cryptography

3.1 : The Data Encryption Standard

The first modern cryptographic advancement since Shannon's contributions began with work at
IBM in the early 1970s and culminated with the 1977 publication of the Data Encryption
Standard (DES) U.S. Federal Information Processing Standard 46-3 (FIPS 46-3). (Branstad 1978) The
ubiquity of digital communication and the rise of computer systems in the 1960s brought with it a
need for both public and private sector security services, primarily methods of data
protection. (Branstad 1978) This need was identified by a US standards bureau who brought it to public
notice, (Branstad 1978) initiating, for the first time, a broad interest in cryptographic research. (Burr 1977)

To maintain security for its business associates and large financial organizations, the US
National Bureau of Standards (NBS) conducted a study on the US government's digital
communication capabilities in 1972. (Branstad 1978) Through this study NBS recognized a standard for
encrypting sensitive information was necessary. (Branstad 1978) "Among the needs for physical,
administrative and technical security measures and procedures, the need for a method of
protecting computer data during transmission and storage was identified". (Branstad 1978 p. iv) In an
effort to develop such capability, NBS worked with the National Security Agency (NSA) to
determine criteria for a new national standard, soliciting proposals in 1973. (Branstad 1978) None of
the submissions were suitable. (Branstad 1978)

August 1974 marked the beginning of the second round of solicitation, a research group at IBM
was prepared for the call. (Branstad 1978) This triumphant contender was designed from 1973-74 at
IBM, the algorithm was derived from Horst Feistel's work on the Lucifer cipher. (Keliher 1997) The
draft Data Encryption Standard (DES) was published in the U.S. Federal Register on 17 March
1975. (Burr 1977) For the first time in the development of an encryption process, public comments
were requested. (Branstad 1978) More amazingly this request was on a national scale, going out to
those of industry, government experts, and the cryptographic community at large. (Burr 1977) Two
public workshops were held to discuss the standard's selection via the design criteria (Burr 1977)
before it was approved as a federal standard in November 1976. (Menezes Van Oorshot & Vanstone 1997) Final
publication occurred on 15 January, 1977 (Menezes Van Oorshot & Vanstone 1997) "The Standard specifies an
algorithm for use by Federal Departments and Agencies in the cryptographic protection of
unclassified computer data during transmission or in storage". (Branstad 1978 p. iv) This standard was
made mandatory for all electronic fund transfer conducted by U.S. government including those
of member banks of the Federal Reserve System. (Burr 1977)

34

Throughout the course of its application, cryptology has been a secretive practice. By example,
it took decades before the declassification of the cryptanalytic principles of Japanese and
German cipher machines from World War II. (Simmons 2009) However, the DES, from the moment of
its inception, was a completely public algorithm. (Simmons 2009) "Every detail of its
operations—enough to permit anyone who wished to program it on a microcomputer—was
widely available in published form and on the Internet". (Simmons 2009 par 5) The result was that one of
the best cryptographic systems in history was also the most public, a result that highlights the
weakness of security by obscurity. (Simmons 2009)

Not only was DES the first publicly accessible cipher to be approved by a national agency, its
subsequent adoption by standards organizations worldwide caused the DES to become the "de
facto" (Simmons 2009 par. 3) international standard for both business and commercial data security. NBS'
publication of the DES specification created a surge of public interest in cryptography which
acted as the impetus for the first widespread interest academic cryptology, particularly
cryptanalysis of block ciphers. (Burr 1977)

According to a NIST retrospective about DES:

"The DES can be said to have "jump-started" the nonmilitary study and development of
encryption algorithms. In the 1970s there were very few cryptographers, except for those
in military or intelligence organizations, and little academic study of cryptography. There
are now many active academic cryptologists, mathematics departments with strong
programs in cryptography, and commercial information security companies and
consultants. A generation of cryptanalysts has cut its teeth analyzing (that is, trying to
"crack") the DES algorithm. In the words of cryptographer Bruce Schneier, "DES did
more to galvanize the field of cryptanalysis than anything else. Now there was an
algorithm to study." An astonishing share of the open literature in cryptography in the
1970s and 1980s dealt with the DES, and the DES is the standard against which every
symmetric key algorithm since has been compared." (Burr 1977 p. 252)

35

3.2 : Symmetric Key Definitions

Symmetric-key cryptography was the only method of encryption publicly known before 1976. (Van

Tilborg & Jajodia 2011) Before this time, all pre-modern, key dependent, cryptographic system
implementation, whether simple transformations by hand or the intricate electromechanical
machines used in World War II, were of the same logical class. Systems of this kind are known
as secret-key, single-key, shared-key, one-key, private-key, or symmetric key cryptosystems. (Van

Tilborg & Jajodia 2011) Symmetric systems require the sender and receiver use an identical
cryptographic key during message transformation. (Van Tilborg & Jajodia 2011) Symmetric key algorithms
are implemented as either a block cipher or a stream cipher. (Van Tilborg & Jajodia 2011)

Stream ciphers transform individual plaintext digits sequentially. (Van Tilborg & Jajodia 2011) The size of
plaintext digits are determined by the stream cipher method. (Paar & Pelzi 2009) Dated methods like the
Caesar or Vigenere ciphers, process single letters, while modern implementations, like RC4,
process single bits. (Paar & Pelzi 2009) In general, stream cipher output is dependent on a hidden
internal state, initialized by cryptographic key, which changes as the cipher operates. (Stallings 2017) A
stream cipher algorithm functions by first using the key material to generate the "keystream", a
stream of pseudorandom digits of arbitrary length the same as, or longer than, that of the
plaintext to be encrypted. (Van Tilborg & Jajodia 2011) Keystream and plaintext digits are then combined,
via a randomness preserving operation, to produce a seemingly random digit of the ciphertext
stream. (Van Tilborg & Jajodia 2011) The inverse operation uses the same cryptographic key to generate an
identical key stream that is combined with the ciphertext to recreate the original plaintext. (Van Tilborg

& Jajodia 2011)

As with a One-Time Pad, key stream units are sequentially combined with plaintext units to
produce a unit of the ciphertext. In this way, a stream cipher emulates the function of the OTP
which is proven to have perfect secrecy. (Van Tilborg & Jajodia 2011) However, the key stream is
pseudorandom, algorithmically generated from a small, fixed size cryptographic key. (Van Tilborg &

Jajodia 2011) Modern examples range from 64 - 256 bits. (MHFP 2015) We know, from the earlier OTP
discussion, that a cryptographic cipher designed to achieve perfect secrecy must have a key as
long as the intended plaintext message. (Shannon 1949) Using the cryptographic key as input, a
stream cipher algorithmically generates a pseudorandom keystream of arbitrary length as long
or longer than the plaintext. (Van Tilborg & Jajodia, 2011) It is this keystream that is combined, using a
randomness preserving operation, with the plaintext digits. (Van Tilborg & Jajodia, 2011) As the key of a
stream cipher is less than the length of the plaintext it can no longer guarantee perfect secrecy,
the resulting keystream is only pseudorandom. (Shannon 1949) While stream ciphers can achieve
high security assurance, the proof of security associated with a one-time pad no longer hold.

36

Converse to the individual transformations applied by stream ciphers, block ciphers transform
fixed-length groups of bits, the same size as the key, called blocks. (Van Tilborg & Jajodia, 2011) Block
cipher output is generated by a deterministic transformation that is specified by a symmetric key
the same size as the block intended for encryption, similar to an OTP. (Van Tilborg & Jajodia, 2011)
However, the size of the block is determined by the cipher and while a cipher may be capable of
operation on more than one block size, prior to encryption, plaintext messages must be
padded. (Van Tilborg & Jajodia, 2011) Padding adds artificial plaintext material until messages are a multiple
of the block size selected during a particular operation. Methods of padding are explained later,
in Section 10.2, of this report. Next, we explore the fundamental concepts which connect
Shannon's discoveries in Information Science to the revolutionary DES and its contemporary
successor, the Advanced Encryption Standard (AES). (Stallings 2017)

37

3.3 : Symmetric Block Cipher Design

This section will explore the concepts of diffusion, confusion, and how the operations that
provide them relate to the evolution of cipher structure. Confusion and diffusion were first
identified as properties of a secure cipher identified by Claude Shannon in A Mathematical
Theory of Cryptography(1945) . (Shannon 1945) To paraphrase Shannon, confusion causes the
relationship between the ciphertext and the symmetric key to be as complex as possible, where
as diffusion dissipates the statistical structure of the plaintext over the entirety of
ciphertext. (Shannon 1949) In his work, Shannon suggests that a combination of the two
transformations are sufficient to obscure the structural characteristics of the plaintext and
impede statistical analysis of its relation to the key and ciphertext. (Shannon 1949) Today, the
properties of confusion and diffusion have quantifiable definitions.

Confusion applies to ciphers where by each ciphertext unit has highly nonlinear relations with
multiple key bits. (Stallings 2017) A function said to provide confusion generally means a process
changes data from the input to the output in a complex way which obscures their
relationship. (Keliher 1997) In the context of cryptographic ciphers, confusion attempts to make
discovery of the key used for a particular cryptographic transformation as difficult as
possible. (Stallings 2017) Even by cryptanalysis of a large number of related plaintext and ciphertext,
the relation between the key material input and the ciphertext output must be so complex as to
make it relatively impossible to deduce. (Stallings 2017) Therefore, by a function with high confusion,
each ciphertext bit should depend on the entire key, as well as in distinct ways on various key
bits such that variance in even a single key bit alters the transformation entirely. (Stallings 2017)
Modern methodology recommends this be "...achieved by the use of a complex substitution
algorithm". (Stallings 2017 p. 125)

Diffusion applies to ciphers where, statistically, a single plaintext bit flip causes a change in half
of the ciphertext bits. (Stallings 2017) A function said to provide diffusion generally means that changes
in a plaintext unit will reflect in a quantifiable portion of the output. (Stallings 2017) In the context of
cryptographic ciphers, diffusion attempts to make the statistical analysis relationship between
the plaintext and ciphertext as complex as possible. (Stallings 2017) "This is achieved by having each
plaintext digit affect the value of many ciphertext digits; generally, this is equivalent to having
each ciphertext digit be affected by many plaintext digits." (Stallings 2017 p. 124) Done well, every
plaintext unit affects every unit of the ciphertext, complicating cryptanalysis. (Stallings 2017) Even
when an adversary has intercepted sufficient material, the cryptanalytic work required is great,
as the statistical relationships of the plaintext are diffused, evident only in blocks of very small
individual probability. (Shannon 1949) "In a binary block cipher, diffusion can be achieved by
repeatedly performing some permutation on the data followed by applying a function to that

38

permutation". (Stallings 2017 p. 125) When this is done, plaintext bits of different positions contribute to
each ciphertext bit. (Stallings 2017)

Generally, the simplest way to achieve diffusion and confusion properties is through a
well-defined and repeatable series of substitutions and transpositions. (Shannon 1949) All ciphers
involve transposition or substitution in some form, and those that employ a combination of these
two mathematical operations are capable of particularly robust security assurances. (Britannica 2016)
Substitution replace one symbol, or symbol group, with another symbol, or symbol group. A
cryptographic substitution is an operation that replaces a plaintext unit or segment value with a
defined ciphertext value. (Van Tilborg & Jajodia, 2011) Transposition exchanges the location of two
entities. (Van Tilborg & Jajodia, 2011) The strict cryptographic definition requires that only two members of a
given set are transposed while all other members retain their location. In practice the term
transposition is often used erroneously to reference an arbitrary reordering of set members, a
function defined as permutation. The reason for their interchangeability stems from the fact that
a series of transpositions can be made to equal any permutation. As is convention, we will use
permutation to generally reference such transformations when we do not require the strictness
of transposition. We can compare cryptographic substitution and transposition functions.
Cryptographic transposition exchanges a plaintext unit's location without altering the
value. (Britannica 2016) Cryptographic substitution alters a plaintext unit's value without a change in
location. (Britannica 2016)

For transformations involving a nontrivial number of message symbols both functions are
individually insecure. (Shannon 1949) Modern cryptographic round functions thus implement
substitution operations with sufficient properties of confusion and transposition operations with
sufficient properties of diffusion. (Menezes Van Oorshot & Vanstone 1997) Modern block ciphers consist of an
initial conversion to binary before applying cipher rounds with a well defined sequence of S-box
substitutions and P-box permutations. (Menezes Van Oorshot & Vanstone 1997)

A substitution box or S-box is used to substitute a block of input bits for a corresponding block of
output bits. (Asif Buchanan Li 2018) S-Boxes use nonlinear Boolean functions to obscure the relationship
between the key and the ciphertext, achieving confusion. (Van Tilborg & Jajodia, 2011) The desired property
is that each output bit will depend on every input bit. (Asif Buchanan Li 2018) A well designed S-box has
the effect that a change one bit of plaintext will, on average, result in a change in half of the
ciphertext bits. (Asif Buchanan Li 2018)

A permutation box or P-box is used to permute input bits. (Brown & Seberry 1990) A P-Box causes
diffusion by individual transposition of the outputs of one round forming a permutation that is
input to the next round. (Brown & Seberry 1990) An effective P-box ensures the bits of any input source
are distributed to as many individual inputs of the next rounds. (Brown & Seberry 1990) In modern ciphers

39

this is done such that each of the S-box input bits come from the outputs of different S-boxes
and none of the input bits to a given S-box comes from the output of that same S-box. (Brown &

Seberry 1990)

The substitution of binary units is a form of fractionation. (Britannica 2016) Fractionation is a general
substitution of individual symbols in the plaintext to multiple symbols in the ciphertext, (Britannica 2016)
the method of encoding implemented by Francis Bacon in his Bacon Cipher. Modern
fractionation methods convert each message unit by a standardized binary representation. The
binary string created undergoes cryptographic transformation, the result of which may then be
reverted into a message alphabet for human interpretation. When a fractionated message is
transposed, the components of message units become widely separated in the cipher text,
achieving diffusion. (Kopal 2018)

A cipher alternating application of substitution and permutation transformations was first
implemented by Horst Feistel, who lead a team at IBM in the late 1960's. (Keliher 1997) Feistel’s
famous Lucifer cipher is a descendant of Shannon's product cipher that alternates confusion
and diffusion functions. (Stallings 2017) It was found that iterating a combination of these functions on
the binary string generally makes cryptanalysis increasingly harder to leverage. (GJMN 2015) This
structure became the archetype for block cipher design after DES was adopted as the US
national cryptographic standard. (Keliher 1997) To this day, block cipher design relies on confusion
and diffusion of message structure. The Feistel cipher structure, nearly half a century in age, is
the general structure implemented by Triple Data Encryption Algorithm (TDEA) and the
Advanced Encryption Algorithm (AEA) the two encryption algorithms currently approved for
protecting unclassified computer data by NIST. (Stallings 2017)

Most contemporary block ciphers are categorized as iterated product ciphers. (Van Tilborg & Jajodia, 2011)
Modeled after the concept of a product cipher, systems built by composition of simple
cryptographic operations. (Van Tilborg & Jajodia, 2011) The Product Cipher was first put forth by Claude
Shannon in Communication Theory of Secrecy Systems(1949) . (Shannon 1949) When properly
designed, the resulting product cipher shows greater resilience under cryptanalysis than the
component operations. (Shannon 1949) Iterated ciphers use repeat applications of a round function,
an invertible cryptographic transformation, to convert fixed-size blocks of message text. (Van Tilborg &

Jajodia, 2011) Each cipher iteration consists of one application of the round function and each round
function is composed of a sequence of cryptographic operations. (Van Tilborg & Jajodia, 2011) As
cryptographic primitives generally compose a given cryptographic system, cryptographic
operations are the basic building blocks of cryptographic cipher rounds. (Van Tilborg & Jajodia, 2011) A
product cipher is called an iterative product cipher if all round functions are identical. (Van Tilborg &

Jajodia, 2011)

40

Modern cipher round structure is defined by the concept of an SP-network, or
substitution–permutation network (SPN). (Van Tilborg & Jajodia, 2011) An SPN takes a plaintext block and
cryptographic key as inputs, applying cipher rounds, alternating substitution boxes (S-boxes)
and permutation boxes (P-boxes), to produce the output ciphertext block. (Van Tilborg & Jajodia, 2011) Each
round transformation is executed in the same manner, with variance provided by round values,
generally called round constants a round key or subkey. (Van Tilborg & Jajodia, 2011) A key schedule
algorithm calculates round keys through the use of simple cryptographic operations, such as
S-boxes and P-boxes, on the input cryptographic key. (Van Tilborg & Jajodia, 2011) During each round, the
round key is combined using what is known as a group operation, a binary operation satisfying
certain mathematical axioms. (Van Tilborg & Jajodia, 2011) We will cover these later, in Section 6.2.

Two key properties of SP networks are the avalanche property, identified by Feistel; and the
completeness property, identified by Kam and Davida. (Brown & Seberry 1990) Completeness effect
applies whenever each bit of the ciphertext depends upon every plaintext bit. (Keliher 1997)
Avalanche effect applies whenever one input bit is changed, on average half the output bits
change. (Keliher 1997) These effects work to ensure that every output bit becomes related to of each
input bit in as few rounds as possible. (Brown & Seberry 1990) A well-designed SPN implements
alternating rounds of S-box substitutions and P-box permutations to satisfy the properties of
confusion and diffusion to thwart application of statistical cryptanalysis. (Keliher 1997) An effective
cryptographic transformation must redistribute non-uniformity of plaintext bits across much
larger structures in the ciphertext, making that non-uniformity indetectable. As a bit can have
only two states, a secure cryptographic transformation should function such that bit conversion,
from one seemingly random state to another, occurs with half probability. In the output of a well
designed SPN, statistically half of the bits are related to any one input bit. (Van Tilborg & Jajodia, 2011)
Therefore the value of any single input bit is hard to predict. (Van Tilborg & Jajodia, 2011) However, one
more fact that we have previously discussed, without a secure cryptographic key, the SPN, as
well as all modern cryptographic methods, perform a complex but fully deterministic
transformation of its inputs. (Van Tilborg & Jajodia, 2011)

41

3.4 : Key Management

Generally, cryptographic keys are the mechanism by which cryptographic algorithms allow
information to remain secure when transmitted over untrusted channels or held in untrusted
storage. In practice, keys are used as cryptographic system input to produce secure output. We
have discussed how cryptographic keys are implemented such that they provide security even if
the cryptographic method is known completely by adversaries. If a system is secure even when
the enemy knows everything except the key, then all that is needed is to manage keeping the
keys secret. By successfully managing keys, cryptographic methods replace a difficult problem,
keeping an indefinite amount of information secure, all messages, with a much more
manageable one, keeping a single relatively small secret secure, an encryption key. A system
that requires long-term secrecy for something as large and complex as the whole of it's design
obviously cannot achieve that goal. As we have discussed, those systems designed with
obscurity as the primary mechanism of security assurance only replaces one difficult problem,
the secrecy of all messages, with another of near equal difficulty, the secrecy of a widely applied
process. Therefore, successful key management is critical to the security of any cryptosystem.

Key Management is generally the process of secure cryptographic key use in relation to a given
cryptosystem. (Van Tilborg & Jajodia, 2011) Of primary concern for users wishing to exchange cryptographic
messages, is the parameterization necessary to transform messages sent and invert messages
received. To ensure security, users must establish and maintain those inputs necessitated by
their intended cryptosystem. The life cycle associated with cryptographic keying material
includes their generation, distribution, storage, update, and cancellation. (Van Tilborg & Jajodia, 2011) Key
generation for example, ensures that cryptographic keys are both sufficiently random and
contain enough entropy to prevent it from being guessed by adversaries or discovered through
cryptanalysis. (Van Tilborg & Jajodia, 2011) This problem, while difficult, has been addressed in many ways
by various cryptographic systems RFC 4086. (Schiller Crocker 2005) Key generation is primarily a
mathematical and thus computational process. In contrast, other aspects of key management
involve social, political, legal, and ethical considerations such as organizational practices and
policies, user education, and coordination between individual, departmental, and external
entities. (Van Tilborg & Jajodia, 2011) Due to the necessary inclusion of significant human involvement, key
management is a deeply challenging aspect of cryptographic practice. (Van Tilborg & Jajodia, 2011) This
document will not address every aspect of Key Management, rather, it hopes to highlight major
complications and their solutions.

Historically, one of the most critical challenges in the practice of cryptography has been the
secure distribution of keys. (Van Tilborg & Jajodia, 2011) Cryptographic keys, in practice, represent a shared
secret between entities used to maintain a secure communication channel. The process of key
distribution defines methods for exchange of the information necessary to establish a secure

42

communication channel. (Van Tilborg & Jajodia, 2011) The key exchange problem asks how entities of
separate location can agree upon a cryptographic key, without risk of eavesdroppers. (Van Tilborg &

Jajodia, 2011) If two parties cannot establish secure key distribution they won't be able to
communicate without the risk of messages being interpreted by adversaries. Key exchange
protocols generally define a method by which cryptographic key information is communicated
between parties. (Van Tilborg & Jajodia, 2011) Secure key exchange is difficult as it must occur via a secure
channel. (Van Tilborg & Jajodia, 2011) As key exchange is a form of information exchange it is said to
transpire across a channel between communicating participants. A 'secure channel' generally
references some method of transferring data resistant to eavesdroppers. (Van Tilborg & Jajodia, 2011) The
act of key exchange is said to occur either "in-band" or "out-of-band". (Dulaney & Easttom 2017 p 242)
In-band keys are exchanged through the same communication channel intended for encrypted
information. (Dulaney & Easttom 2017) Out-of-band keys are exchanged via any other communication
channel than the one intended for encrypted information. (Dulaney & Easttom 2017)

Perfectly secure channels do not exist in the physical world. (PSP, 2016) "There are, at best, only
ways to make insecure channels (e.g., couriers, homing pigeons, diplomatic bags, etc.) less
insecure: padlocks (between courier wrists and a briefcase), loyalty tests, security
investigations, and guns for courier personnel, diplomatic immunity for diplomatic bags, and so
forth. ". (PSP, 2016 p. 2) One time pads, though they produce perfectly secure ciphertext with a simple
transformation, require the same amount of key information to be shared as the information to
be encrypted. Modern ciphers retain much of the security offered by the one time pad system
while requiring a smaller information exchange in the form of cryptographic keys. (Van Tilborg & Jajodia,

2011) As we have seen, instances where a symmetric key cryptosystem is used, require the
exchange of an identical key as symmetric-key algorithms use the same key for encryption and
decryption of a message. A severe disadvantage of symmetric, or single-key, cryptography is
that it requires a secret key to be established between users and maintained in secret for secure
use. This requirement is necessary as the proper cryptographic keying facilitates the successful
operation of a given cryptosystem.

While symmetric keys are miniscule in length relative to those of the OTP, if capability of
message exchange between users is meant to be both complete and secure, the sharing of a
distinct key is required for each possible pair of communicating parties. (Kotzanikolaou & Douligeris 2006) We
will find that, with each added participant, the required number of keys increases
rapidly. (Kotzanikolaou & Douligeris 2006) We have discussed how one pair of entities would require a single
key, what is required for each new participant? Each new user added must generate a key for
each previous user. If we were to consider adding the nth unique participant, it would require

new keys. Beginning from a pair, each key addition forms a series n − 1) (
keys are required. (Kotzanikolaou & Douligeris 2006) This leads to a need for 45 .. n − 1) (n −1) 2 1 + 2 + . + (= n /

unique keys for 10 participants, 4950 keys for 100 and to 499500 keys for 1000. (Kotzanikolaou &

Douligeris 2006) Not only must a secret key be securely exchanged between each pair of
communicating entities prior to system use, as each key is shared between two entities, its

43

future secrecy and thus a system's security depends on both entities. (Kotzanikolaou & Douligeris 2006)
Additionally, due to the difficulty of key distribution, duration of cryptographic key use, and thus
the frequency of key updates further amplify the key exchange problem. As it increases
adversarial effort to recover multiple keys, they should be frequently changed. Additionally, while
groups of messages could share a key, ideal security requires keys be replaced after each
ciphertext exchange. This practice limits risks involved with system failure, as key update
frequency increases, number of ciphertexts recoverable on key compromise, decreases.
However, the difficulty of consistent secure key use increases in proportion to the number of
participants and their messages.

To understand modern key management, it is important to understand the two types of
cryptosystems, symmetric or secret key and asymmetric or public key. (Van Tilborg & Jajodia, 2011) The
theory of asymmetric methods was first made public in 1976. (Van Tilborg & Jajodia, 2011) The technology
to support public use of these methods was not available before the mid 1990's. (Van Tilborg & Jajodia,

2011) All earlier cryptographic systems, both ancient and modern, were symmetric in nature. As
we have discussed, symmetric cryptography is based on the use of a single secret key is used
to perform both a cryptographic operation and its inverse. (Van Tilborg & Jajodia, 2011) This necessitates a
secure method of conveyance for at least one cryptographic key copy and a heightened risk of
compromise during transfer and at either end-point due to this shared key. (Van Tilborg & Jajodia, 2011) The
requirement of shared secret key access is the defining disadvantage of symmetric systems.

Asymmetric or Public key cryptography is based on the use of a mathematically related key pair
where by one member of the pair is used to perform a cryptographic operation and the other is
used to perform the cryptographic inverse. (Van Tilborg & Jajodia, 2011) This pair consists of a key which
may be readily published or revealed without risk, the public key. (Van Tilborg & Jajodia, 2011) As well as a
key which must be kept secret or revealed only to trusted parties, the private key. (Van Tilborg & Jajodia,

2011) In practical systems, the mathematical relationship shared by an asymmetric key pair is
made such that knowledge of the public key does not allow determination of the private key
efficiently. (Van Tilborg & Jajodia, 2011) While public-key systems are capable of the functionality
necessitated by modern security systems, it is not best practice to use them on their own. (Paar &

Pelzi 2009) Some of the most prevalent misunderstandings related to asymmetric cryptography
follow.

It is commonly thought that asymmetric encryption methods are less susceptible to
cryptanalysis. (Stallings 2017) "There is nothing in principle about either symmetric or public-key
encryption that makes one superior to another from the point of view of resisting
cryptanalysis". (Stallings 2017 p. 284) The security provided by a given encryption scheme is dependent
firstly on the relative strength of it's design and then on cryptographic key size as it determines
computational work involved in compromise by brute force. (Stallings 2017) The second is that
asymmetric systems provide a comprehensive solution to the faults of, and thus make obsolete,

44

symmetric system use. (Stallings 2017) In fact, "because of the computational overhead of current
public-key encryption schemes, there seems no foreseeable likelihood that symmetric
encryption will be abandoned". (Stallings 2017 p. 284) In practice, public-key encryption methods are
incredibly computationally intensive, about one hundred to one thousand times slower than
private-key algorithms. (Paar & Pelzi 2009) Lastly, there is a feeling that the asymmetric solution of
public key distribution makes trivial the cumbersome handshaking and exponential growth
involved with symmetric secret key distribution. (Stallings 2017) In fact, " … some form of protocol is
needed, generally involving a central agent, and the procedures involved are not simpler nor
any more efficient than those required for symmetric encryption". (Stallings 2017 p. 285)

Symmetric cryptography and asymmetric cryptography are not mutually exclusive, these
techniques are used to complement each other in practice. (Van Tilborg & Jajodia, 2011) Most practical
protocols use a hybrid approach which incorporates both symmetric and asymmetric
primitives. (Paar & Pelzi 2009) "Examples include the SSL/TLS protocol that is commonly used for
secure Web connections, or IPsec, the security part of the Internet communication protocol". (Paar

& Pelzi 2009 p. 154) Modern information security systems, among other things, use symmetric
cryptographic primitives for the encryption and decryption of data and asymmetric cryptographic
primitives for key distribution. (Van Tilborg & Jajodia, 2011) As a basic example, "symmetric cryptography
can be used to encrypt a message and asymmetric cryptography can be used to securely
transfer the secret key used to encrypt the file to the intended recipient(s)". (Van Tilborg & Jajodia, 2011 p. 684)
Ironically, while it eliminates many of the problems associated with symmetric key distribution,
asymmetric cryptography is rarely used for data encryption. (Paar & Pelzi 2009) As public-key inventor,
Whitfield Diffie, has said, “the restriction of public-key cryptography to key management and
signature applications is almost universally accepted.” (Stallings 2017 p. 284)

45

3.5 : The Advanced Encryption Standard

The 1990s brought the World Wide Web to the public, the excitement which ensued generated
rapid economic expansion in computer technology. (LFS 2018) Serious threats arose in the 1990s,
challenging the security of both governmental and commercial interests, and called for a
reassessment of the US's cryptographic capability. (LFS 2018) Before then, sensitive information
sent over the Internet, such as financial data, was encrypted, if at all, with DES. (LFS 2018) Due to its
vast popularity and duration of use, the DES is the cryptographic system and de facto standard
against which every symmetric key algorithm of the previous century was compared. (Burr 1977)
Regardless of DES' popularity, the 56-bit key size was thought to be too small, even upon
release in 1976. (Gilmore 2005) It was claimed that governments in the 1970's had sufficient
computing power to break DES. (Gilmore 2005) By the 1990s close, cryptanalysts would recover DES
messages in under 24 hours. (LFS 2018)

NBS, renamed the National Institute of Standards and Technology (NIST) in 1988 , held another
competition to determine a suitable standard, this time accepting international submissions. (LFS

2018) In the September 1997 Federal Register, NIST solicited submissions for the Advanced
Encryption Algorithm, which would be “an unclassified, publicly disclosed encryption algorithm
available royalty-free worldwide that is capable of protecting sensitive Government information
well into the next century.” (LFS 2018 p. 17) NIST received 21 submissions and held the first public
conference in 1998. (LFS 2018) The selection process was even more open and transparent than its
predecessor. DES was officially replaced by the Advanced Encryption Standard (AES) after
selection of Rijndael, the submission of Belgian cryptographers Vincent Rijmen and Joan
Daemen. (LFS 2018) The selection process as well as the resulting cipher won praise from the
international cryptographic community, presumably restoring confidence to those suspicious of a
backdoor in the standard's predecessor.

In 2001 NIST announced FIPS 197 and DES' aging designation as a standard was withdrawn.
Despite deprecation as an official standard, DES, specifically the still-approved and
computationally secure triple-DES variant, remained popular. (LFS 2018) DES' 56-bit key-size was
shown to be insufficient when, in 1997, RSA Data Security began to issue public challenges to
break DES. (Almunawar 2001) The first was completed by a team in 96 days, two more challenges were
hosted the next year, were broken in 41 days and then 56 hours. Six months later in January of
1999 DES was broken in 22.25 hours. (Almunawar 2001) As a result, the use of single DES encryption
is now insecure and should not be included in new cryptosystem design, as well, messages
protected by any cryptosystem implementing single DES are at risk.

Since standardization by the US federal government in 2001, the U.S. Department of
Commerce’s National Institute of Standards and Technology (NIST) estimates a $250 billion

46

https://www.nist.gov/sites/default/files/documents/nvl/Responding_to_National_Needs-SP955-FULL.pdf

economic impact from the Advanced Encryption Standard (AES) adoption by private industry. (LFS

2018 "Today, the AES protects everything from classified data and bank transactions to online
shopping and social media apps." (NIST 2018 par. 2) Professor Christof Paar of the Ruhr University of
Bochum, Germany, an internationally-renowned cryptography and AES specialist, estimates
that the algorithm encrypts well over half of all newly created data. (Chernev 2019) This paper seeks to
provide information on the theory, context, and mechanism of the world's most used
cryptographic system, Rijndael, the Advanced Encryption Standard. (Paar & Pelzi 2009)

47

Part 2

Mathematical Techniques
of the
Advanced Encryption Standard

48

Section 4 : Set Theory

Section 4.1 : Establishing Sets

To facilitate the understanding of cryptographic algorithms it is useful to examine relevant
mathematics. Modern cryptographic primitives implemented in both symmetric and asymmetric
ciphers are based on arithmetic within a finite number of elements. (Paar & Pelzi 2009) Number sets
with which we are familiar, such as the set of integers, are infinite. (Paar & Pelzi 2009) Generally, sets
are abstract structures, representing unordered collections of distinct objects. (Cohn 1981) Formally,
the entities which comprise a given set define the collection and thus determine its uniqueness.
(Cohn 1981) As each element of a set is distinct and the collection is unordered, how we choose to
list or represent a set makes no difference, every representation is equivalent to the same
abstract structure.

By convention a set A, is represented by capital letters and the elements which a given set
contains are denoted by lower-case letters, a. If we suppose the set S, contains a given element
e, we state that e is an element (or member) of S, or e is in S, or e belongs to S. We denote the
relation "element of a set", known as set membership, by the "∈" symbol. We express the
membership relation, . Conversely, if element e is not a member of the set S, we state that ∈S e
e is not an element of S, or that e is not in S. We express this relationship, . Sets are ∉S e
potentially infinite collections, consisting of distinct objects said to possess the relation of
membership. This membership relation is said to define the set.

 A set is said to be finite if it possesses a limited number of member elements, and infinite
otherwise. (Cohn 1981) The cardinality, or order, of a finite set S is the number of members in S,
denoted |S| = n where n ∈ ℕ. (Cohn 1981) We can thus conceptualize the utility granted by a set's
definition to derive from the fact that it divides an aggregate into two distinct collections: Those
objects which are members of a set and those that are not. Due to the generality of the set
structure, member elements can represent any group of abstract objects (i.g. numbers, colors,
symbols, etc…) We have defined the convention and notation by which we specify a set S, an
individual element x, and whether they possess the relation of membership, x ∈ S, or not x ∉ S.
We now specify a set in its entirety, explicitly, implicitly, and by predicate.

We may explicitly define a finite set through the individual specification of its members. (PM 2015)
Set members are bounded by braces { }, in an unordered, comma delimited sequence,

. (PM 2015) A set S may express the relation of equivalence to an explicitly defined set e, o, i, a, u} {
via the equality operator =, S = . (PM 2015) Sets of considerable or possibly infinite e, o, i, a, u} {

49

cardinality become impossible to represent in this way and we must rely on other conventions to
define membership. (PM 2015)

If the elements in a set have an obvious pattern, we can define the set implicitly using ellipsis
(…). (PM 2015) Suppose we have an explicitly defined set S where S = {1,2,3,4,5,6,7,8,9,10}. (PM 2015)
An implicit definition might be S = {1,2,…,10}. (PM 2015) We are meant to observe the elements
count up uniformly, and might read this definition as: S is the set containing 1, increasing by 1,
to 10. (PM 2015)

Often we wish to define more abstract properties via membership relations. (PM 2015) An object
specified via predicate, is defined in terms of a property that it possesses. (PM 2015) Whether an
object x possesses a particular property P is either true or false, and so can be the subject of a
propositional function P(x). (PM 2015) A set may then be specified by such a propositional function,
e.g.: S={x | P(x)}. (PM 2015) This definition is to be interpreted as S is the set of objects which satisfy
the property P. (PM 2015) In this context, we see that the vertical bar symbol "|" is interpreted to
mean "such that". (PM 2015 par. 5) The previous definition could then be interpreted formally as, S is
the set of all x, such that P(x) is true. (PM 2015) To provide further example, the definition S = { (x, y)
| x, y ∈ ℕ } could be interpreted, S is the set of all ordered pairs (x, y) such that x and y are in
the natural numbers. (PM 2015) Be aware, some texts prefer a colon ":" instead of a vertical bar. (PM

2015)

There are also sets so common that they are given their own symbology, examples used
throughout this document include: (Jackson 2017)

The integers, denoted ℤ, {... , −2, −1, 0, 1, 2,...}

The positive integers, denoted ℤ + , {1, 2, 3,...}

The non-negative integers less than n, denoted ℤ n , {0, 1, …, (n-1)}.

50

Section 4.2 : Operations on Sets

Sets are often used to model mathematical operations. Generally, an operation is a function , f
of the form , where is the domain set, is the codomain set, and models a → Y f : X X Y f
transformation or mapping between the two sets. (Jackson 2017) An operation's domain is the set for
which the function is defined to produce output. (Jackson 2017) An operation's codomain is the set
within which output is constrained to fall. (Jackson 2017)

An Injective or one to one function, maps a domain member to no more than one codomain
member. (Jackson 2017) An injection is denoted:

. (Jackson 2017) →Y ∀ x, ∈ X , f (x) (x) ⇒ x f : X x′ = f ′ = x′

A surjective or onto function maps domain members such that at least one corresponds to each
codomain member. (Jackson 2017) A surjection is denoted:

. (Jackson 2017) →Y ∀y∈Y , x∈X , y (x) f : X ∃ = f

A bijective function is both injective and surjective. (Jackson 2017) A bijection, also known as a
one-to-one correspondence, defines an exact correspondence between its domain and
codomain. (O’Leary 2015) This type of correspondence implies invertibility, it can be “undone”, (Jackson

2017 p. 514) for any element we can apply to get and then apply the inverse to recover a () f (a) f
a. (Jackson 2017) Let function be invertible, then there is a function by which →Y f : X →X f 1− : Y

. (O’Leary 2015) A function is invertible if and only if it is a bijection. (O’Leary 2015) This will be of (f (a)) f 1− = a
much relevance in later sections, Table 8 categorizes these behaviours.

51

 surjective non-surjective

injective

bijective

injective-only

non-injective

surjective-only

general

Table 8

A function's domain is composed of a number of sets , equal to the operation's arity .. S1 × . × Sa
. (Cohn 1981) The arity is a fixed non-negative integer characterizing the number of operands for a

which the operation is defined to produce output. (Cohn 1981) Commonly studied operations are
binary operations, of arity 2, such as addition or multiplication, and unary operations, of arity 1,
such as additive inverse or multiplicative inverse. (Cohn 1981) Application of the term "arity" is rare,
examples such as "the addition operation has arity 2" are quite unusual, convention suggests
we say "addition is a binary operation".

A general binary operation ∘, on a set , is a function which takes and produces S f , ∈ S s t
, denoted . (Jackson 2017) A binary operation ∘ joins operands and , (s, t) ∈ S f × S → S f : S x y ∘y x

. (Jackson 2017) Furthermore, a binary operation ∘, is said to be "on" a set S if it's two domains and
codomain are S, ∘ . (Jackson 2017) In literature, binary operations are usually denoted by × S → S : S
associated infix operators, rather than . Infix operation is indicated by the sequencing of (s, t) f
operators between effected operands such as , , or . (Sedgewick Wayne 2011) s + t s * t ts

We now define terminology for the two traditional arithmetic operations and their inverses:
The result of the addition of a and b, denoted a + b, is called the sum of a and b.
The result of the subtraction of a and b, denoted a - b, is called the difference of a and b.
The result of the multiplication of a and b, denoted ab or a⋅b, is called the product of a and b.
The result of the division of a and b, denoted a÷b or a/b, is called the quotient of a and b.

52

Section 4.3 : Properties of Set Operations

Throughout this document it will be necessary to show an operation modeled in this way has
certain structural properties. Addition, subtraction, multiplication, and division on the integers ℤ,
are well-known binary operations. We will show that these operations adhere to certain
fundamental properties.

For example, we can differentiate a general binary function, and a binary operation defined on a
set. A function is formally defined as a relation between sets that associates each domain
member with a codomain member, . A function is then said to →Y ∀y∈Y , ∃x∈X , f (x) f : X = y f
be binary if the domain is of arity 2, . We have ×Y→Z, ∀z∈Z, ∃x∈X and y∈Y , f (x,) f : X y = z
seen that a binary function where sets , is known as a binary operation. This X = Y = Z
difference is formally defined as the property of closure. (Cohn 1981) A set is closed under a given
operation if the resultant is a member of the set from which its operands were evaluated. The
simplest example is the trivial set {0}, containing only zero. We find that the trivial set {0} is
closed under the operations of addition, subtraction and multiplication,

. 0 and 0 0 0 + 0 = 0 − 0 = 0 × 0 =

An example that illustrates this difference that also has broader implications to the material to
come, It can be seen that division of integers is not a closed binary operation, ∀a∈ℤ, ∃b∈ℤ | a/b
∉ ℤ , for an integer , there exists integer , such that division produces a member of the a b
codomain that is not an integer and therefore not a member of the domain. In later sections we
will see how many of the common operations in both algebra and formal logic have interesting
properties associated with the relationships they specify. These properties include closure,
associativity, comutivity, distributivity, and the existence of identity and inverse elements.

53

Section 5 : Number Theory

5.1 : Introduction to Modular Arithmetic

This section facilitates the understanding of cryptographic algorithms through the examination of
relevant mathematical operations. Modern cryptographic primitives implemented in both
symmetric and asymmetric ciphers are based on arithmetic within a finite number of elements.
Not only is modular arithmetic a common way of performing arithmetic in a finite set of integers,
it is the method implemented by the AES. (Paar & Pelzi 2009) As such, understanding modular
arithmetic and its application is of fundamental importance in the context of this report as well as
in the greater scope of modern cryptographic study and practice.

The mechanism of modular arithmetic is essentially identical to the method by which we perform
clock arithmetic. (Paar & Pelzi 2009) For example, moving between the 24-hour and 12-hour clock
systems is a familiar conversion. One takes the value in the 24-hour clock system and reduces
the hour by 12. 13:00 in the 24-hour clock system is 1:00 in the 12-hour clock system, this
relationship of equality is captured by the operation 13 modulo 12 = 1.

We examine the 12 hour system again, an example of a finite set of integers from everyday life:

Consider the hours on a typical wall clock. If you keep adding one hour, you obtain:

1h,2h,3h,...,11h,12h,1h,2h,3h,...,11h,12h,1h,2h,3h,...

Even though we keep adding one hour, we never leave the set.

What are the practical implications? Imagine counting hours by the week instead of the modulus
12 system used in practice. We could no longer work a 9-5 job, instead we now hold down a
9-17, 33-41, 57-65, 81-89, 105-113 job, remembering that we have hours 129-137 and 153-161
off for the weekend. As we can see, arithmetic with a finite set has practical application. By
modular arithmetic, we see what is known as a congruence, each represents ≡33≡57≡81≡105 9
9AM. This is due to the divisibility of the number of hours in a week by the number of hours
represented by the wall clock: 168/12 = 14

Now that we have some experience with the system by which we have a general way of dealing
with arithmetic in finite sets, we can formally examine and define modular arithmetic. We shall
first explore a common arithmetic operation, division, which has several properties that relate to
the operation of modular arithmetic. We will then cover modular arithmetic operations
themselves, followed by the operations of the AES which use modular arithmetic as a
component.

54

5.2 : Divisibility

For two integers and , , where , means such that . (Stallings 2017) a b , ∈ℤ a b ≠ 0 a ∣b a c∈ℤ ∃ ac b =

We then say divides indicating that and is said to be a divisor or factor of . (Stallings a b a
b ℤ ∈ a b

2017) For two integers and , , where and , then a does not divide , we a b , ∈ℤ a b ≠ 0 a a
b ℤ ∉ b

write . (Stallings 2017) ∤b a

Examples (i) −3|18, since 18 = (−3)(−6). (ii) 173|0, since 0 = (173)(0).

Properties of divisibility : (Stallings 2017) a, , , , ∈ℤ ∀ b c x y

● If a|1, then a = ±1

● If a|b and b|a, then a = ±b

● If a|b, then a|bc

● b|0, ∀b ≠ 0

● If a|b and b|c, then a|c

● If a|b and a|c, then a|(bx + cy)

An integer , , is a common divisor of and if and . (Stallings 2017) A non-negative c ∈ℤ c a b ∣a c ∣b c
integer , is the greatest common divisor (gcd) of two integers and , , d ∈ℤ , d + a b , ∈ℤ a b
denoted , if is a common divisor of and ; and whenever and , then gcd(a, b) d = d a b ∣a c ∣b c

. (Stallings 2017) Equivalently, is the largest positive integer that divides both and ∣d c cd(a, b) g a b
. (Stallings 2017) As we shall see, numbers that are related by a gcd of 1, , have great cd(a, b) g = 1
importance to the implementation of AES as well as many fields related to number theory. (Paar &

Pelzi 2009) For , if then and are said to be relatively prime or , ∈ℤ a b cd(a, b) g = 1 a b
coprime. (Stallings 2017)

Euler's totient function is defined as the number of positive integers less than that are n
relatively prime to . (Stallings 2017 p. 65) The number of integers , where n ∣k∣ x =

. The integer is equal to the cardinality of , , where is k { y ∣ gcd(y, n) 1, 1 ≤ y ≤ n} = = x k k∣ ∣ k
the set of integers for which the greatest common divisor is equal to 1, . (Stallings y cd(n, y) g = 1

2017) This function is denoted using the Greek letter ϕ, it is also known as Euler's phi function. (Paar

& Pelzi 2009 p. 165) We will represent the set of integers coprime to as . n (n) ϕ

An integer , , where is greater than , , is prime if, for all positive integers , p ∈ ℤ p p 1 1 p > n
, less than , the only positive divisors are and , . (Stallings 2017) ∈ℤ n + p 1 < n < p 1 p cd(p, n) g = 1

Otherwise, is composite. (Stallings 2017) ℙ is the set of all primes {2, 3, 5, 7, 11, ...}. (Stallings 2017) If p is p
prime and , then either or . (Stallings 2017) For n∈ℙ, ϕ(n) = {0, 1, …, (n-1)} as prime ∈ℙ p ∣ab p ∣a p ∣b p
numbers are coprime to all other integers by definition. (Stallings 2017)

55

Divisibility Theorem (Stallings 2017)

If and , then unique integers and exist, with , such that . , ∈ℤ a d ≠ 0 d q r ≤ r 0 < d ·q a = d + r

● is called the divisor d

● is called the quotient q

● is called the dividend a

● is called the remainder r

By example, , , we find and so that . 7 a = 1 d = 3 q = 5 r = 2 7 1 = 3 * 5 + 2

If for integers and , the division theorem reveals a relationship. We then say divides r = 0 a d d
 or that is divisible by . For any value of , we could create a set of integers for which a a d d

their remainder . This set would then be the infinite set of multiples of , an abstraction r = 0 d
with which most are familiar and can envision for a given integer . d

For example is , is the set . d = 5 ..., 0, , 0, 5, 10, 15...} { − 1 − 5

56

5.3 : Congruence Relation

We now think about value sets which share the same remainder when divided by , where the d
remainder . For any given divisor , we have a remainer range of , and one such ≠ 0 r d ≤ r 0 < d
infinite value set for each member of this range, where all member values are said to be
congruent to their entire set. (Stallings 2017) This establishes a congruence relation on the integers ℤ,
represented by the modulus operator. (Stallings 2017)

For a positive integer , two integers and are said to be congruent modulo , if and m a b m a b
have the same remainder when divided by . (Stallings 2017) m

For and , is congruent to modulo iff , , , ∈ℤ a b p q ∈ℤ m + a b m q·m) r b p·m) a − (= = − (

Equivalently, if the difference of and b is divisible by m, i.e. (a − b) is an integer multiple of m, a
then and b are congruent modulo m. (Stallings 2017) a

 and , is congruent to modulo iff a, ∈ℤ ∀ b ∈ℤ m + a b m ∣ (a − b) m

i.e. ∃k∈ℤ, a − b km) (=

, and , such that divides a, , ∈ℤ ∀ m r q∈ℤ ∃ ≤ r 0 < m m a − r

as divides , we write and m is called the modulus. (Stallings 2017) We may then m a − r ≡ r (mod m) a
denote the remainder , . (Stallings 2017) r mod m r a =

The expression is called a congruence relation, read: a is congruent to b modulo ≡ b (mod m) a
m. (Paar & Pelzi 2009) Let it be known that some literature uses = instead of ≡ to denote congruence.
We must also be aware of when the parentheses enclosing are omitted, as this denotes mod m) (
the modulo operation , expressing . (Stallings 2017) The integer is known as mod m a = b ≤ a 0 < m m
the modulus of the congruence. (Stallings 2017)

We may rewrite a congruence relation , explicitly showing its relationship with mod m) a ≡ km (+ b
division. (Stallings 2017) We can see that b is not necessarily the remainder, b can be any member of
a set of infinite values of a given congruence relation, as previously stated. Generally,

57

 declares that a and b have the same remainder when divided by m. (Stallings 2017) That ≡ b mod m a
is, and where is the common remainder. (Stallings 2017) By taking pm a = + r mb = q + r ≤ r 0 < m
the difference of these expressions and setting we find: . (Stallings 2017) − q k = p ma − b = k

Example

 because , which is a multiple of 12, or, equivalently, because both 8 ≡ 14 (mod 12) 3 8 − 14 24 3 =
38 and 14 have the same remainder 2 when divided by 12.

58

5.4 : Modular Arithmetic

The (mod n) operator maps all integers into the set of integers {0, 1, … , (n - 1)}. (Stallings 2017) We
can perform arithmetic operations in a finite set via modular arithmetic.

Properties of Modular arithmetic: (Stallings 2017)

[(a mod n) + (b mod n)] mod n = (a + b) mod n

[(a mod n) - (b mod n)] mod n = (a - b) mod n

[(a mod n) * (b mod n)] mod n = (a * b) mod n

If a and b are congruent modulo m, then they are of equivalent value and produce equivalent
results as operands during modular arithmetic under m. (Stallings 2017) While any continuous
sequence of m numbers would technically be of equal value and be able to represent the set of
modular arithmetic under m, convention and simplicity dictate the first m natural numbers, {0, 1,
2, ..., (m-1)}. All other numbers are then congruent to and can be expressed as a member of
this set for the purposes of modular arithmetic. Congruence , like equality , is a type of ≡) (=) (
equivalence relation. (Jackson 2017) We define the set ℤ n to be the set of potential integer remainders
modulo n, ℤ n = {0, 1, ..., (m − 1)}. This is also the set produced by operator (mod m). |S| denotes
cardinality, and is equal to the number of elements in the set S, thus |ℤ n | = n. (Jackson 2017)

ℤ n can be equipped with an additive and multiplicative binary operations, + and *. (Stallings 2017)
Addition and multiplication in ℤ n function similar to addition and multiplication as defined over
the integers ℤ, except that the results are reduced modulo n.

Suppose we must compute 14*19 in ℤ 15 , given that in ℤ. 4 19 266 1 * =

We reduce 266 modulo 15: , so , and hence in ℤ 15 . 66 5 7 1 2 = 1 * 1 + 1 66 mod 15 1 2 ≡ 1 4 9 1 1 * 1 = 1

We consider the set ℤ 9 = {0,1,2,3,4,5,6,7,8} in which arithmetic is seemingly regular for results
smaller than 9: . But what about 8+4? As with the previous example, we 2 * 3 = 6 8 4 + 4 =
perform integer arithmetic then find the remainder with respect to the modulus, 9. As 8+4 = 12,
and (12-3)/9 = 1, the remainder 3 is said to be congruent to 8 + 4 modulo 9.

59

Example: For every given modulus m and integer a, there are (infinitely) many valid
remainders. (Paar & Pelzi 2009) Assuming we would like to reduce 13 modulo 8 there are infinitely many
congruent results:

 13 ≡ 5 (mod 8), 5 is a valid remainder since 8|(13−5)

 13 ≡ 21 (mod 8), 21 is a valid remainder since 8|(21−5)

 13 ≡ −3 (mod 8), −3 is a valid remainder since 8|(−3−5)

There is a system behind this behavior. The set of numbers {...,−19,−11,−3,5,13,21,29,...}, all of
which are congruent, form what is called an equivalence class.

There are eight other equivalence classes for the modulus 9:

0 (mod 9) {...,−18,−9, 0, 9,18,...}

1(mod 9) {...,−17,−8, 1, 10,19,...}

…

8 (mod 9) {...,−10,−1, 8, 17,26,...}

Generally, each modulus has m equivalence classes {0, …, m-1}. By the 9-5 example, it is
shown how a timekeeping system becomes less practical as the size of the representative set
grows, i.e. the longer it takes to return to 0. Difficulty is experienced upon conversion between
the set of hours on a wall clock 12, and the set of hours in a week, 168. Generally, numbers
become increasingly difficult to compute as their digits grow. The modulus operator can assist
us in reducing intermediate results to simplify future calculations by reducing the size of the
numbers to be operated upon. (Paar & Pelzi 2009) Ultimately, for a given modulus m, it does not matter
which equivalence class element we choose for computation. (Paar & Pelzi 2009) We show this using

and two modular exponentiation methods. (mod 7) 38

The first approach is a straight forward eight multiplication operations where by we obtain a
large intermediate result of 6561 , before a modular reduction that ensures 561 ≡ 2 (mod 7) 38 = 6
our final result is no larger than 6, since . (Paar & Pelzi 2009) 561 37 6 = 9 × 7 + 2

For the second approach we perform two partial exponentiations: then 1 1 38 = 34
* 34 = 8 * 8

replace the intermediate results 81 with a member of its equivalence class, the smallest positive

60

member modulo 7 in the class is 4 , 81 11 7) (= * + 4
. (Paar & Pelzi 2009) 1 1 6 ≡ 2 (mod 7) 38 = 34

* 34 = 8 * 8 = 4 * 4 = 1

For the first method, dividing 6561 by 7 is mentally challenging, and an inefficient use of
computational resources. The second method's operands never become larger than two digits.
Generally, for computations with a fixed modulus, those common in cryptography, it is
computationally advantageous to apply the modulo reduction to keep operands, and their
results, small as we are free to choose the class element that results in the easiest
computation. (Paar & Pelzi 2009) This property of equivalent classes has major practical implications as
operations in many practical public-key schemes rely on exponentiation of the form , x mod me
where x,e,m can be as great as 2048 bit integers. (Paar & Pelzi 2009)

61

5.5 : Exclusive OR

Pre-modern cipher systems were operated by hand, making them tedious and prone to human
error. With the development of rotor cipher machines during World War I (Van Tilborg & Jajodia, 2011) and
the invention of computers during World War II (Van Tilborg & Jajodia, 2011) , the application of automated
cryptographic operations immensely more complex than the ancient hand computed methods
were made possible. Due to cryptology's crucial role in the outcome of both world wars, the
continuous development of electromechanical devices, and the invention of digital computers,
the cryptographic methods and their applications have progressed in capability, accessibility,
and prevalence. Modern applications implement encryption operations as software programs,
rather than pencil and paper, they instead use binary data files to represent input plaintext and
key material, as well as for recording of the output ciphertext before storage or transmission.
This implementation method has been the most effective for the automation of data entry and
processing, particularly for algorithmic application of cryptographic operations. Such as the
mixing function used by the one time pad.

This mixing operation is the exclusive OR, a logical operation that outputs true only when inputs
differ in truth value, i.e. one is true, the other false. (Van Tilborg & Jajodia, 2011) The Inclusive-or operation
results true when either or both inputs are true. (Van Tilborg & Jajodia, 2011) We shall represent the
exclusive-or function by XOR or ⨁. When using binary values for true (1) and false (0) exclusive
or functions by comparing two bits, returning 1 if the two bits differ and 0 if they are the
same. (Paar & Pelzi 2009) This is equivalent to addition modulo 2 or performing addition in base 2
without carrying, seen by Table 9 to the left. (Paar & Pelzi 2009) This operation, known as a bitwise
XOR, is defined to function on equal length bit patterns by transforming corresponding bits. (Paar &

Pelzi 2009) Example: 1110 2 XOR 1001 2 = 0111 2

XOR =

1 1 0

1 0 1

0 1 1

0 0 0

Table 9

62

The exclusive or operation has several uses: (Paar & Pelzi 2009)

● Determines the equality of two individual bits

● Discretionary bit toggling, alters a bit xored with 1 and retains a bit xored with 0.

● A series of XORs, , is true for an odd number, false for an even number, of ⨁b⨁…⨁z a
true values

The XOR operation plays a major role in modern cryptography and will be used many times in
the remainder of this document. (Paar & Pelzi 2009) On its own, exclusive-or is used as a cryptographic
mixing function. (Paar & Pelzi 2009) For a simple example of exclusive-or's relevance, we xor a
pseudorandom bit stream with a message bit stream to produce an encrypted bit stream r m c
, , where is the ith bit of a given stream. (Paar & Pelzi 2009) To decrypt this mixing function ⨁m ci = ri i i
and restore the original message bit stream , we xor the previous pseudo-random bit stream m

 with the encrypted bit stream , where i is the ith bit of a given r c r ⨁c ⨁r ⨁m ⨁m i i = ri i i = 0 i = mi
stream. (Paar & Pelzi 2009)

Why is the XOR operation used? Let us consider the encryption of the plaintext bit , if xi xi = 0
is dependent on the key bit . The ciphertext value , is if = 0 or if = 1. If ki yi yi = 0 ki yi = 1 ki
the key bit behaves perfectly randomly, i.e., it is unpredictable, it has exactly a 50% chance ki
to have the value 0 or 1, then both possible ciphertexts also occur with a 50% likelihood.
Likewise, for plaintext bit , depending on the value of the key stream bit , there is equal xi = 1 ki
chance that the ciphertext if = 1 or if = 0. By observing an output value, yi = 0 ki yi = 1 ki
there is exactly a 50% chance of any input bit value. (Paar & Pelzi 2009) The XOR operation preserves
randomness, meaning that a random bit XORed with a non-random bit will produce a random
result. (Paar & Pelzi 2009) Exclusive-or is heavily used in block ciphers such as AES (Rijndael) and in
block cipher implementation and modes of operation.

63

5.6 : Polynomial Arithmetic

We shall represent a polynomials as mathematical expressions of the form

x a x ... a an n + n 1−
n 1− + + 0

The highest exponent of x is the polynomial's degree (Dong 2010) , for example, the degree of
 is 7. The values a n , a n-1 , ... , a 0 are called coefficients. (Dong 2010) x x7 + 2 4 + 6

We add and subtract polynomials by operations between their like terms, those with the same
degree.

Polynomial Addition: (Dong 2010)

(x 5 +3x 3 +4)+(6x 6 +4x 3) = 6x 6 + x 5 + 7x 3 + 4

Figure 7

Polynomial Subtraction: (Dong 2010)

(x 5 +3x 3 +4)+(6x 6 +4x 3) = -6x 6 +x 5 -x 3 +4

Figure 8

64

We can also multiply and divide polynomials by recording how each term in the first polynomial
effects each term in the second polynomial, then summing those intermediate results.

Polynomial Multiplication: (Dong 2010)

(x 5 + 3x 3 + 4)*(6x 6 + 4x 3) = 6x 11 + 18x 9 + 4x 8 + 36x 6 + 16x 3

Figure 9

Polynomial Division: (Dong 2010)

(6x 11 + 18x 9 + 4x 8 + 36x 6 + 16x 3) ÷ (x 5 + 3x 3 + 4) = 6x 6 + 4x 3

Figure 10

65

A dividend not perfectly divisible by the offered divisor is represented by a polynomial
remainder. (Dong 2010)

Polynomial Division With Remainder: (Dong 2010)

(3x 6 + 7x 4 + 4x 3 + 5) ÷ (x 4 + 3x 3 + 4) = 3x 2 - 9x + 34 with remainder -98x 3 - 12x 2 + 26x -131

Figure 11

66

5.7 : Matrix Multiplication

A matrix is denoted by bold capital letters, A, B, C as shown by Figure 12 below. (O’Leary 2015) We
then indicate individual members of matrix A by index notation such that member then ai j
expresses the matrix entry on the ith row and jth column. (O’Leary 2015)

Matrix multiplication is then performed with A, an n×m matrix, and B, a m×p matrix, such that
the matrix product C, C = AB, is an n×p matrix. (O’Leary 2015)

Figure 12

Each product matrix entry is the result obtained by individually multiplying an entry of the ith ci j
row of A and the jth column of B, then summing these m products. (O’Leary 2015)

 for i = 1, ..., n and j = 1, ..., p. a b b bci j = i 1 1 j + … + ai m m j = ∑
m

k=1
ai k k j

b b .. b c11 = a11 11 + a12 21 + . + a1m m1

b b .. b ci1 = ai1 11 + ai2 21 + . + aim m1

b b .. bc1j = a11 1j + a12 2j + . + a1m mj

...

b b .. bcij = ai1 1j + ai2 2j + . + aim mj

Thus the product AB is defined if and only if the number of columns in A equals the number of
rows in B. (O’Leary 2015) Figure 13, below, depicts the method of matrix multiplication for two
members of matrix C, the product of the two matrices denoted by the capital letters A and B in
Figure 14, below. This diagram shows how each intersection in the product matrix corresponds
to a combination between a row of A and a column of B.

67

Figure 13

Figure 14

The values indicated by Figures 13, 14 above are solved for:

b + b x1 2 = a1 1 1 2 a1 2 2 2

b + b x3 3 = a3 1 1 3 a3 2 2 3

Traditionally matrix entries are numbers, but they may be any kind of mathematical objects for
which an addition and multiplication operations are associative, the addition is commutative, and
the multiplication is distributive with respect to the addition. (O’Leary 2015)

68

Section 6 : Abstract Algebra

6.1 : Algebraic Structure

Now that we have some understanding of set theory, its notation, and the creation of binary
operations, we are able to progress toward the necessary structures and operations of the AES.
The mathematical constructs implemented and manipulated by AES are sets with defined
structure. Through selective abstraction, mathematicians have defined algebraic structures now
integral to both pure mathematics and the applied sciences. Almost all systems studied are
sets, abstract algebra in particular, is based on set theory in one form or another. (Jackson 2017)

This section concerns those properties that define the algebraic structures which mathematically
model the mechanisms of the AES. We shall see how the definition of a binary operation and
the relation it creates, affects the set for which it is defined. We begin from the most basic
structure, a general set for which a binary operation is defined, then progress through the
individual properties necessitated by the operations of the AES and define the algebraic
structures which result as they increase in complexity. This incremental addition of properties
creates a hierarchy of algebraic structures. Groups, rings, and fields constitute the basic
hierarchy of abstract algebraic objects and are required for the definition and understanding of
the AES. (Sedgewick Wayne 2011) "The abstract formalization of the group axioms, detached as it is from
the concrete nature of any particular group and its operation ... allows entities with highly
diverse mathematical origins in abstract algebra and beyond to be handled in a flexible way
while retaining their essential structural aspects. The ubiquity of groups in numerous areas
within and outside mathematics makes them a central organizing principle of contemporary
mathematics". (Bello Danjuma Simon 2018 p. 54) The approach adopted by this document is known as naïve
set theory, by which we define set relations and focus on their functional properties without
concern for those unusual circumstances under which exceptions occur. (Jackson 2017) In practice,
the definitions and functionality outlined by this document do not involve such exceptions. (Jackson

2017)

An algebraic structure is a collection of finitary operations on a set S, also called an algebra. (Cohn

1981) The set S is then referred to as the underlying set. (Cohn 1981) A finitary operation is an
operation of finite arity, that is an operation of limited arguments or operands. (Cohn 1981) An
algebraic structure is denoted where S represents a set and ∘ represents a properly S,) (∘
defined operation. (Cid Murphy Robshaw 2006) This document shall use the symbol '∘' to generalize any
binary operation. We can represent more complex algebraic structures as ordered tuples:

 where S is a set which has one or more binary operations ∘ i , 1≤ i ≤ n. (Cid Murphy S, , , .., ∘) (∘1 ∘2 . n

Robshaw 2006)

69

Closure

An algebraic structure (S,∘) is closed under ∘ iff (Paar & Pelzi 2009) (a,) ∈ S×S ∘ b ∈ S ∀ b : a

In general, we may state that S is closed under ∘, or that is closed, if the binary operation S,) (∘
∘, combines any two elements a,b ∈ S, by some mechanism, denoted or , such that their ∘b a ba
result is always a member of S. (Paar & Pelzi 2009) A set S, equipped with a binary operation ∘, is called
a magma if (S, ∘) is closed, S ∘ S → S. (Jackson 2017) As the binary operations which define set
structure are closed by definition, the magma will serve as our most basic example of an
algebraic structure. (Jackson 2017)

Associativity

A binary operation ∘, on a set S, is associative iff (Paar & Pelzi 2009) a, , ∈ S (a∘b)∘c a∘(b∘c) ∀ b c =

A set S, equipped with a binary operation ∘, is called a semigroup if is closed and S,) (∘
associative. (Jackson 2017)

Commutative

A binary operation ∘, on set S, is commutative iff (Paar & Pelzi 2009) a, ∈ S a ∘ b b ∘ a ∀ b =

If semigroup is commutative it is known as an abelian semigroup. (Jackson 2017) S,) (∘

Identity

An element e is the Identity element of set S, iff ∀a ∈ S ∃ e ∈ S e ∘ a = a ∘ e = a (Paar & Pelzi 2009)

The element e is said to be the identity element of, or neutral element with respect to, ∘. (Jackson

2017) An identity element, when combined with a set member, with respect to a binary operation,
results in an identical value as that set member. (Paar & Pelzi 2009) The identity of addition is 0 and the
identity of multiplication is 1. (Paar & Pelzi 2009) A set S, equipped with a binary operation ∘, is called a
monoid if is closed, associative, and has an identity element e. (Jackson 2017) The monoid S,) (∘
therefore is characterized by specification of the triple . (Jackson 2017) We begin to see a S, , e) (∘
pattern, a monoid is a semigroup with an identity element or a magma with associativity and
identity.

70

6.2 : Groups

Invertible

Binary operation ∘ on set S with identity e is invertible iff (Paar & Pelzi 2009) a∈S ∃a , a∘a ∘a ∀ 1− 1− = e = a 1−

An inverse element, with respect to a binary operation, can reverse, or invert the effect of
combination with a corresponding element, this is known as inversion. (Paar & Pelzi 2009) Inversion
manifests as negation under addition, and the reciprocal under multiplication. (Paar & Pelzi 2009)
Extending this structural construct, a monoid in which each element has an inverse is a group. A
set G, equipped with a binary operation ∘, is called a group if satisfies the conditions of G,) (∘
closure, associativity, identity and invertibility. (Jackson 2017) These four conditions are called the
group axioms: (Jackson 2017)

Group

(G, ∘) is a group iff if ∘ satisfies closure, associativity, identity and invertibility (Paar & Pelzi 2009)

Closure : a, ∈G ∣ a∘b∈G ∀ b

 Associativity : a, , ∈G ∣ (a∘b)∘c a∘(b∘c) ∀ b c =

 Identity element : e∈G, a∈G ∣ e∘a a∘e a ∃ ∀ = =

 Inverse element : a∈G, a ∈G ∣ a∘a a ∘a e ∀ ∃ 1− 1− = 1− =

The simplest possible construct that satisfies all of the group axioms is the trivial group, 0} G = {
, the set consisting of a single element. (Jackson 2017) There is only one possible binary operation
that can be defined on this set, and only one ordered pair of elements upon which it can
operate, with only a singular result that can be produced: . (Jackson 2017) Brief verification ∘0 0 0 =
shows that this operation satisfies all of the group axioms: 0 is the identity element, it’s its own
inverse, and the operation is shown to be closed and associative over the elements of the
set. (Jackson 2017) One of the most familiar groups is the set of integers ℤ, with the operation of
arithmetic integer addition. (Jackson 2017) The following properties of arithmetic addition on the
integers serve as an example for a set and operation which satisfy the group axioms: (Cid Murphy

Robshaw 2006)

71

● For any two integers a and b, the sum is also an integer. Thus, a, ∈ℤ, (a)∈ℤ ∀ b + b a + b
the integers are closed under addition.

● Adding to , and their result to is equal to adding a, , ∈ℤ, (a) a b) ∀ b c + b + c = + (+ c a b c
 to the result of . Thus addition under the integers is associative. a b + c

● For any integer a, adding it to zero or vice versa returns the a∈ℤ, 0 a ∀ + a = + 0 = a
same integer. Zero is thus the identity element of addition.

● For every integer , there is an integer such that its a∈ℤ, ∃b∈ℤ, a b 0 ∀ + b = + a = a b
addition to results in . The integer is then denoted , the inverse of . a 0 b − a a

The integers, together with the operation +, form a mathematical object belonging to a broad
class sharing similar structural characteristics. To appropriately understand and classify these
structures, their definition is developed by the group axioms.

Any binary operation which preserves the above properties, with respect to some set , G
represents a group over . As it's properties dictate the set's algebraic structure, the associated G
operation is called the law of . (Cohn 1981) Again, is called the underlying set of the group G G G,) (∘
. (Cohn 1981) Often the group's underlying set is used as a short name for the group as the G G,) (∘
operation can be discerned via context. (Jackson 2017) When this is the case, a usage of is G,) (∘
instead denoted by . (Jackson 2017) G

We have required the existence of unique identity elements and a unique inverse for ∈S e g 1−
each element . (Jackson 2017) We now prove that the identity element of a group is unique. ∈S g e S

That is, for any other element satisfying condition of Invertibility, there exists an identity ∈S g
element such that . (Jackson 2017) ∈S e g∈S, e∘g g∘e g ∀ = =

Proof

Suppose also satisfies the identity condition, that for any element , we have ∈S f ∈S g ∘g f = g
and . In particular, . But since is also an identity, we have as well. So ∘f g = g ∘e f = e e ∘e f = f

. (Jackson 2017) f = e

Any element of a group has a unique inverse . That is, for any other element g G g 1− g
satisfying condition (IV), we have (Jackson 2017) g g′ = 1−

72

Proof

Suppose that and are two inverses for an element . Then . By g 1− g′ ∈G g ∘ g g ∘ g e g 1− = ′ =
condition III we have as well. Thus: g∘g 1− = e e ∘g (g ∘g)∘g g∘(g∘g) g∘e g g 1− = 1− = ′ 1− = 1− = =

(Jackson 2017)

Hence the identity element and the inverse elements are shown to be unique.

The order of a group (G, ∘), often denoted |G|, is the cardinality of the set G. (Jackson 2017) If the
order of (G, ∘) is finite, we say that G is a finite group. (Jackson 2017) Similarly, we say that an element
g ∈ G has finite order if there exists a positive integer k such that g ∘ ... ∘ g = g k = e, the identity
element. (Jackson 2017) In this case, the least such integer k is called the order of g and is denoted by
or |g|, thus the inverse element g -1 = g (|g| - 1) . (Jackson 2017) Let g be an element of a group G with
identity element e. Then the order of g, denoted |g|, is the smallest positive integer n such that
g^n = e. If no such integer n exists, g is said to have infinite order. (Jackson 2017) For a finite group G,
the order of any element divides the order of the group G. (Jackson 2017)

In the case of ℤ 4 , orders are given by

|1,3|=4, |2|=2, |0|= 1.

For ℤ 12 , the orders are

|1,5,7,11|= 12, |2,10|= 6, |3,9|= 4, |4,8|=3, |6|=2, |0|=1.

In both of these examples we see that the order of the identity element is 1, and furthermore
that no other element apart from the identity has order 1, this is true in general. Let G be a
group with identity element e. ∀g ∈ G, |g| = 1 if and only if g = e. (Jackson 2017)

Proof

The order of e is always 1, since 1 is the smallest positive integer n for which e^n = e.
Conversely, if g^1 = e then g = e. (Jackson 2017)

73

The simplest, nontrivial, case is that of a group where all the nonidentity elements have order
2. (Jackson 2017) If we let G be a nontrivial group, all of whose elements apart from the identity have
order 2. (Jackson 2017) Then G can be shown to be commutative. (Jackson 2017)

Proof

Let g,h ∈ G, by the hypothesis, g^2 = h^2 = e, and so g = g −1 and h = h −1 . It then follows that, as
required, g ∘ h = g −1 ∘ h −1 = (h ∘ g) −1 = h ∘ g. (Jackson 2017)

The group (G, ∘) is said to be an abelian group if ∘ is commutative. (Jackson 2017) Almost all groups
implemented cryptographically are abelian, since the commutative property is often what makes
them cryptographically interesting. (Paar & Pelzi 2009)

If a group, with group operation + and identity 0, is abelian, it is called an additive group. (Jackson

2017) An additive group operation is denoted by addition, f = g + h and 5 × g = g + g + g + g +
g. (Jackson 2017) If a group, with group operation × and identity 1, is abelian it is called a multiplicative
group. (Jackson 2017) A multiplicative group operation is denoted by multiplication, f = g × h and g^5 =
g × g × g × g × g. (Jackson 2017) Roughly speaking, a group is a set with one operation and the
corresponding inverse operation. If the operation is called addition denoted "+", the inverse
operation is subtraction and the inverse element is denoted −a. If the operation is multiplication
denoted "×", the inverse operation is division (or multiplication with the inverse element) and the
inverse element is denoted a −1 . (Paar & Pelzi 2009)

Building on the operation of arithmetic addition on the integers ℤ, we consider this structure
alongside others commonly used in mathematics, including those structures addressed by this
text, to determine whether each example structure's binary operation and underlying set satisfy
the group axioms. We begin with the algebraic properties of the groups (ℤ, +) and (ℤ, ×) in Table
10, below:

 ℤ Addition Multiplication

Closure a+b∈ℤ a*b∈ℤ

Associativity a+(b+c) = (a+b)+c a*(b*c) = (a*b)*c

Commutativity a+b = b+a a*b = b*a

Identity a+0 = a a*1 = a

Inverse a+(-a) =0 1*1 = 1, -1*(-1) = 1

Table 10

74

We can conclude that (Z, *), unlike (Z, +), does not satisfy the group axioms as most member's
inverses are not integers, ∃a∈ℤ, a -1 ∉ℤ. Furthermore, addition of to is equivalent to addition a b
of to , thus addition on the integers is commutative, so the structure (ℤ, +) is also an Abelian b a
group. We now consider the group operations of modular addition and multiplication on the set
of remainders modulo n, . The algebraic properties of (ℤ n , +) and n∈ℤ, 0, 1, 2, ..., n } ∀ ℤn = { − 1
(ℤ n , ×), are detailed by Table 11, below.

 ℤ n Addition modulo n Multiplication modulo n

Closure a+b ≡ c mod n, 0 ≤ c < n a*b ≡ c mod n, 0 ≤ c < n

Associativity a+(b+c) ≡ (a+b)+c mod n a*(b*c) ≡ (a*b)*c mod n

Commutativity a+b ≡ b+a mod n a*b ≡ b*a mod n

Identity a+0 ≡ a mod n a*1 ≡ a mod n

Inverse a+(n-a) ≡ 0 mod n ∃a -1 ∈ϕ(n) ∀a∈ϕ(n)

Table 11

We find that, as with their arithmetic counterparts, (ℤ n , +) is a group and (ℤ n , *) is not. (ℤ n , +) is
also an Abelian group with the neutral element 0 and inverse element , ∃˗a∈ℤ , ∀a∈ℤn n

 . (ℤ n , ×) does not form a group because not all elements a (n) (mod n) ˗ = − a −a) 0 mod n a + (=
 have an inverse such that a × a −1 = 1 mod n. In fact, given that 0 ∈ ℤ n and 0 is not coprime to a

any number and is therefore non-invertible, ∀n∈ℤ, (ℤ n , ×) is not a group.

Finally, we consider the group operations of modular addition and multiplication on the set of
remainders coprime to the modulus n. We will denote this set ϕ(n), Euler's totient function. The
algebraic properties of (ϕ(n), +) and (ϕ(n), ×), are detailed by Table 12, below.

ϕ(n) Addition modulo n Multiplication modulo n

Closure ∃ a+b ∉ ϕ(n) a*b ≡ c mod n, c ∈ ϕ(n)

Associativity a+(b+c) ≡ (a+b)+c mod n a*(b*c) ≡ (a*b)*c mod n

Commutativity a+b ≡ b+a mod n a*b ≡ b*a mod n

Identity No a*1 ≡ a mod n

Inverse ∃a∈ϕ(n) | -a∉ϕ(n) ∀a∈ϕ(n) ∃a -1 ∈ϕ(n)

Table 12

75

Surprisingly, we now find that (ϕ(n), +) is not a group and (ϕ(n), *) is now an Abelian group.

For n =10, the order of ϕ(10), *) is 4 not 9 as ϕ(10) = {1, 3 , 7, 9}. We know that when n is a
prime number, n∈ℙ, the order of (ϕ(n), *) is. |ϕ(n)|=n-1, e.g. ϕ(n) = {1, 2, ..., n-1}. More
generally, the set of positive integers ℤ +

n = {1, …, n-1 } under the operation of multiplication
modulo n forms an abelian group if n is prime i.e. n∈ℙ. (Jackson 2017) We will use Z* p to denote this
group, which is the multiplicative group of integers modulo prime p i.e. (ϕ(p), *) where p ∈
ℙ. (Jackson 2017)

76

6.3 : Cyclic Group

An abelian group is called cyclic if it contains at least one member which all others may be
expressed with respect to. (Paar & Pelzi 2009) A group member of this type is denoted , and is ∈G g
called the generator of the group. (Paar & Pelzi 2009) Every group member is obtained by repeated
application of the group operation with or it's additive inverse . (Paar & Pelzi 2009) g g ˗

Consider the integers under addition (ℤ, +) we will show that it possesses a generator . A 1 g =
given positive integer is obtained by repeated application of the group operation with , e.g. g

. While 0 or a given negative integer is obtained by repeated application of the 4 = 1 + 1 + 1 + 1
group operation with the additive inverse , e.g. -4 = 1+(-1)+(-1)+(-1)+(-1)+(-1). g ˗

Generally what the existence of a group generator allows is the ability ∀a∈G to be expressed as
either a multiple of g, for groups with additive notation or as an g , ∃g∈G and ∃k∈ℤ, k = a
exponent of g, for groups with multiplicative notation. A generator g, of , ∃g∈G and ∃k∈ℤ, gk = a
a cyclic group G, may be denoted by G = ⟨g⟩. (Jackson 2017) By the example above ℤ =⟨1⟩

If we let be addition modulo on the set by which we define the sum of : ℤ ∘ ℤ → ℤ + n n n n ℤn
any two a,b ∈ ℤ n to be the remainder , of the sum of divided by the modulos r a) (+ b n
represented . (Jackson 2017) This operation defines the cyclic group of order (mod n), r∈ℤ a + b = r n ℤn

, . (Jackson 2017) The operation defined above can be represented by ℤ 12 as shown by n ∣ ∣ℤn = n
Figure 15, below. The elements of ℤ 12 , or any sized cyclic field, may be conceptualized "…
geometrically as n equally spaced points around the circumference of a circle". (Jackson 2017 p. 7) We
then resolve (a + b) by starting at point a then moving b positions clockwise. (Jackson 2017) By
example, 5 + 9 = 14 ≡ 2 (mod 12). (Jackson 2017)

Figure 15

77

Beyond the fact that a cyclic group is generated by a single element, we derive a few general
results about the order of these generators. Suppose G = ⟨g⟩ is a cyclic group. If G is an infinite
cyclic group, by definition g can’t have finite order, as G could then only contain finite
members. (Jackson 2017) Therefore if G is an infinite cyclic group |G| = ∞, g has infinite order |g| =
∞. (Jackson 2017) If G is a finite cyclic group with g of finite order |g|=n, G contains exactly n members
and had order |G|=n. (Jackson 2017)

Proof

For a generator of finite order |g|=n where n∈ℕ, (Jackson 2017) g , ∀k, ∈ℤ k = gk+n = gk+pn p

This follows from g^k = e iff n|k, thus k is a multiple of n (k mod n = 0), hence G must contain at
least n elements. (Jackson 2017) As well G = ⟨g⟩ = {g^k | k ∈ ℤ} = {g,g^2, ..., g^(|g|-1), e} contains at
most n elements. Therefore G is a finite cyclic group |G| = n, if g is of finite order |g| = n. (Jackson

2017)

How do we know a given member g ∈ G generates a group without individually confirming each
member's expression in terms of g? Let k ∈ ℤ n , k is a generator for ℤ n iff . (Jackson 2017) cd(k, n) 1 g =

Proof

k generates ℤ n iff it has order n, , as the smallest positive integer m such that n|(mk) is n k∣ ∣ = n
itself, therefore k and n must be coprime i.e. (Jackson 2017) cd(k, n) 1 g =

As such, any integer k∈ℤ n , that is coprime to n can generate the finite cyclic group ℤ n ,
(Jackson 2017)

and the number of ℤ n generators may be denoted by ϕ(n), Euler’s totient function from Section
5.2. (Paar & Pelzi 2009)

78

6.4 : Isomorphism

As we are interested in understanding those properties which define various algebraic
structures, it is of great utility to have a method by which we could determine whether two given
groups are equivalent. (Jackson 2017) An isomorphism is an equivalence between two structures,
structures that share an isomorphism are then said to be isomorphic. (Cid Murphy Robshaw 2006)
Isomorphic structures are those with equivalent algebraic properties. (Cid Murphy Robshaw 2006) By
definition, groups with equivalent properties are fundamentally the same algebraic structure,
technically indistinguishable. (Cid Murphy Robshaw 2006) We establish the existence of an isomorphism via
bijection, a function of one-to-one correspondence with respect to the group operations. (Jackson

2017) More generally, given two structurally equivalent groups and , we want a G,) (∘ H ,•) (
bijection such that the product in of the images of any two elements of is the G → H f : H G
same as the image of their product in . (Jackson 2017) G

Two groups and are isomorphic, denoted , if there exists a bijective G,) G = (∘ H ,•) H = (≅ H G
function, which we will call an isomorphism, such that ∀u,v∈G, → H , f : G (u∘v) f (u) (v) f = • f
. (Jackson 2017)

For example, if we let p∈ℙ and ℤ p-1 be the group generated additively by 1 ∈ ℤ p-1 , and let ℤ* p be
the group generated multiplicatively by some g ∈ ℤ* p , then , multiplication in ℤ p-1 is g → g m m
equal to exponentiation in ℤ* p and defines an isomorphism between them, thus these groups
are isomorphic. (Cid Murphy Robshaw 2006)

When we realize such relationships exist, the properties of a given isomorphism allow for
alternative representation of some underlying set, a common technique in the study of algebraic
structures. (Cid Murphy Robshaw 2006) Isomorphisms have found use solving problems that had been
intractable otherwise. (Cid Murphy Robshaw 2006)

79

6.5 : Ring

Distributive

A binary operation ∘, on a set S, is distributive iff (Paar & Pelzi 2009) a, , ∈ R (a)∘c a∘c ∘c ∀ b c + b = + b

We carefully studied the set of integers ℤ, giving particular attention to its additive structure.

Through abstraction of arithmetic addition on the set of integers we explored some properties
associated with binary operations; closure, associativity, commutativity, and the existence of an
identity and inverse elements. This led us to formulate the definition of a group, (G, ∘) which
encompassed these axioms. We now define a structure of greater complexity, which defines a
relationship between two such operations and their underlying set. Having established an
understanding of the modulus operator in Section 5.4, we are now ready to define a structure
that is based on modular arithmetic. The definition for the algebraic structure modeled by the set
of integers under the operations of modular arithmetic addition and multiplication. We are ℤn
able to generalize the relationship shared by the arithmetic operations of addition and
multiplication via the algebraic structure called a Ring. (Jackson 2017) Through the application of rings,
theorems derived in the context of arithmetic are found to be applicable to various mathematical
objects such as polynomials and matrices, and vice versa. (Jackson 2017) A ring consists of a set R
with two binary operations defined on its elements. (Jackson 2017) A given ring R, and it's operations
which, we will denote ‘+’ and '×', are represented by the triple (R, +, ×). (Jackson 2017) To qualify as a
ring, an underlying set and its operations must satisfy the following properties, known as the ring
axioms: (Jackson 2017)

Ring

(R, +, ×) is a ring iff (R, +) is an Abelian group, (R, ×) is a monoid, and × distributes over +. (Paar &

Pelzi 2009)

1. (R, +) is an Abelian group: (Jackson 2017)

+ is associative: a, , ∈ R (a) a b) ∀ b c + b + c = + (+ c

+ is commutative: a, ∈ R a b ∀ b + b = + a

additive identity: a∈R ∃0∈R a a ∀ + 0 =

additive inverse: a∈R ∃˗a∈R such that a ˗a) ∀ + (= 0

80

2. (R, ×) is a monoid under multiplication: (Jackson 2017)

× is associative: a, , ∈ R (a×b)×c a×(b×c) ∀ b c =

multiplicative identity: a ∈ R ∃0 ∈ R a×1 a ∀ =

3. Multiplication is distributive with respect to addition: (Jackson 2017)

∀a,b,c ∈ R a×(b+c) = (a×b)+(a×c) (left)

∀a,b,c ∈ R (b+c)×a = (b×a)+(c×a) (right)

We see that the additive operation is required to be commutative, while the multiplicative is not:
∀a,b∈R a×b ≠ b×a. An example of a ring by which we might see this phenomenon is the set of
n×n or square matrices with the operations matrix addition and matrix multiplication. (Jackson 2017)
This set is a ring that is not commutative for . (Jackson 2017) Rings for which both operations n > 1
satisfy the property of commutativity are known as commutative rings. (Jackson 2017) This new
structure definition may seem complex, but these axioms characterize the sets most common in
mathematics, for example the infinite commutative ring (ℤ, +, ∘): the set of integers, with the
operations of arithmetic addition and multiplication. (Jackson 2017) For the majority of cryptologic
practice and specifically during the operation of the AES, we consider the properties and
mechanisms of finite rings, like the commutative ring of integers modulo N, ℤ/ N ℤ. (Smart 2016) As we
have shown, ℤ/ N ℤ is an abelian group when the group law is modular addition, we will now see
that the group ℤ/ N ℤ is also a ring if we consider the relationship between modular addition and
multiplication. (Smart 2016)

Ring ℤ n is defined as the set ℤ n = {0, 1, 2, ... n − 1} and two operations:

Addition a+b ≡ c mod n ∀a,b,c ∈ ℤ n

Multiplication a×b ≡ c mod n ∀a,b,c ∈ ℤ n

Ring ℤ n properties:

(+) identity ∀a ∈ ℤ n a + 0 = a mod n

(+) inverse ∀a ∈ ℤ n a + (−a) ≡ 0 mod n

-a = (-a + m) mod m as 0 ≤ a<m.

(+) is closed ∀a,b,c ∈ ℤ n a + b ≡ c mod n

(+) is associative ∀a,b,c ∈ ℤ n (a + b) + c = a + (b + c)

(+) is commutative ∀a,b ∈ ℤ n a + b = b + a

81

(×) identity ∀a ∈ ℤ n a×1 = a mod n

(×) inverse ∀a ∈ ℤ n a × a −1 ≡ 1 mod n

a -1 ∈ℤ n if a,n are coprime gcd(a,n) = 1

(×) is closed ∀a,b,c ∈ ℤ n a × b ≡ c mod n

(×) is associative ∀a,b,c ∈ ℤ n (a×b)×c = a×(b×c)

(×) is commutative ∀a,b ∈ ℤ n a × b = b × a

We shall consider the integer ring of order 7 and compute addition and multiplication for 3 and 5
in . For the rig , we let modulus n = 7, and the ring members are represented by ℤ 7 = ℤ7 ℤ7
{0,1,2,3,4,5,6}. (Paar & Pelzi 2009)

3+5 = 8 ≡ 1 mod 7 3 × 5 = 15 ≡ 1 mod 7

We will now highlight the following property of rings under modular arithmetic addition and
multiplication the multiplicative inverse is not guaranteed to exists for all elements e ∈ ℤ n .

(Paar &

Pelzi 2009) If an inverse exists for a given element a, we are able to apply the binary operation of
division and receive a defined result . (Paar & Pelzi 2009) A convenient method : ≡ b (mod n) ÷ b ÷ a × a 1−
by which to determine whether the inverse for a given element exists or not is to determine a
the greatest common divisor of and the integer modulus , . An element a ∈ ℤ has a n cd(a, n) g
a multiplicative inverse iff . (Paar & Pelzi 2009) This means, if we determine that the a 1− cd(a, n) 1 g =
largest integer that divides both numbers and is 1, exists. Methods for finding the a n a 1−

 usually employ the Euclidean algorithm. (Paar & Pelzi 2009) For example to determine the cd(a, n) g
existence of the multiplicative inverse of 15 in , we see that , as such the ℤ26 cd(15, 6) 1 g 2 =
inverse must exist. Conversely, since gcd(14,26) = 2 ≠ 1 the multiplicative inverse of 14 is not
defined for . ℤ26

In general, we are able to classify the ring ℤn as the set of elements in which we can add,
subtract, multiply, and sometimes divide. (Paar & Pelzi 2009) However, when we wish to ensure that
division is possible for some a,b ∈ ℤ n , a/b = x (mod n) we must first deduce whether a
multiplicative inverse modulo n exists for a given element a, as division is the inverse operation
of multiplication. (Smart 2016) The multiplicative inverse of a modulo n is a ring member c such that a
∘ c = c ∘ a = 1 (mod n). (Smart 2016) This value is then the inverse of a, denoted a −1 , and provides c
for the equation a ∘ c = 1 (mod n). (Smart 2016) As we have seen, a -1 only exists iff i.e. cd(a, n) 1 g =
when a and n are coprime. Of particular interest, then, is when n is a prime n ∈ ℙ, since then ∀a
∈ ℤ/pℤ and we obtain a solution to a ∘ x = 1 (mod p) for all a ≠ 0. (Smart 2016) Hence cd(a, p) 1 g =
ℤ/pℤ makes the operation of division possible because ∀a∈ℤ/pℤ, ∃a -1 ∈ℤ/pℤ ,where a ≠ 0. (Smart

2016) A commutative ring such that every nonzero element has a multiplicative inverse defines
the algebraic structure known as a field. (Smart 2016)

82

6.6 : Fields

We have arrived at our final category of algebraic structure, the field. The history of finite fields
can be traced back to the 18th century. (Dong 2010) In modern research finite fields have assumed a
role of fundamental importance because of their practical applications in a wide variety of areas
such as "coding theory, cryptography, algebraic geometry and number theory". (Dong 2010 ch4s4) With
this structure, we may now begin to consider the mechanism of AES byte arithmetic, or
application of the arithmetic operations of addition, negation, multiplication and inversion, on
bytes. To model the relationship between the arithmetic operations of addition and multiplication
as well as their respective inverses, via a single algebraic structure we examine a set and two
operations by which we can establish an additive and a multiplicative group. (Paar & Pelzi 2009) This is
what abstract algebraic theory defines as a field. A field consists of a set F, with two invertible
binary operations defined on its elements. (Jackson 2017) A given field F, and it's operations which we
will denote ‘+’ and '×' are represented by the triple (F, +, ×). (Jackson 2017) In order to qualify as a
field, an underlying set and it's operations are required to satisfy the following properties:

Field

(F, +, ×) is a field iff (F, +) and (F\{0}, ×) are abelian groups, such that . < F, +, · > is a
commutative ring and × is distributive over +. (Paar & Pelzi 2009)

+,× Associative: and a, , ∈F (a) a b) ∀ b c + b + c = + (+ c a×b)×c a×(b×c) (=

+,× Commutative: and a, ∈F a b ∀ b + b = + a ×b b×a a =

+,× Identity: and a∈F ∃0, ∈F a a ∀ 1 + 0 = ×1 a = a

+ Inverse: a∈F ∃˗a∈F such that a ˗a) ∀ + (= 0

× Inverse: a∈F∖{0} ∃a ∈F such that a×a ∀ 1− 1− = 1

+,× Distributive: a, , ∈ F (a)×c a×c ×c ∀ b c + b = + b

When we exclude the additive identity, the field elements under addition + and under
multiplication × both form commutative groups. As explained previously, a field is a commutative
ring in which there exists an inverse ∀a ∈ F\{0}). ∀a∈F\{0} means for all elements a of F,
excluding 0. We exclude 0, the additive identity, as this element has no inverse under × by
definition. We have shown how sets of nonprime order with multiplication modulo n do not
define a group, for example, ℤ 8 /{0} = {1, 2, 3, 4, 5, 6, 7}. Therefore, (ℤ n , +, *), in general, would

83

not represent a field. However, for prime n, n ∈ ℙ, the structure formed Z* p, is an Abelian group.
For example Z 5 /{0} ={1, 2, 3, 4} ℤ 5

* . (Z* p , +, *) defines a unique field type, known as a prime field.
These are fields with a prime, non-infinite order, denoted ℤ/pℤ, or F p .

(Paar & Pelzi 2009) This means
that if we consider the set ℤ n along with modular addition and multiplication, for prime n n ∈ ℙ,
ℤ n is not only a commutative ring but also a prime field. (Paar & Pelzi 2009) Let p be a prime, ∀p ∈ ℙ,
the field of order p, may be constructed as the integers modulo p with members represented by
ℤ p = {0, 1, ..., (p−1)}. (Paar & Pelzi 2009) Thus, a prime field is the field of equivalence classes modulo p,
a = b in F p means the same as a ≡ b (mod p).

84

6.7 : Finite Fields

Cryptographic algorithms, both symmetric and asymmetric ciphers, are typically concerned with
arithmetic on a finite number of elements, thus fields with a finite number of elements are of
interest. (Paar & Pelzi 2009) A finite field consists of a finite set F, that defines arithmetic for two
invertible binary operations. (Jackson 2017) A given finite field GF, of order n, and its operations, which
we will denote ‘+’ and '×', are represented by the triple (GF(n), +, ×), where the letters GF stand
for Galois Field. Finite fields are known as Galois Fields, in honour of Évariste Galois, a French
mathematician who established finite fields and proved: (Jackson 2017)

Finite Field

A field of order q exists iff ∀p∈ℙ, k∈ℤ+ q = pk

Prime fields are of the form where the field characteristic p ∈ ℙ and k = 1, however, these are pk
not the only fields of finite membership. An integer q produced by exponentiation of a prime pk

where p ∈ ℙ and k = 1, is known as a prime power. Therefore Finite or Galois fields are those
fields with a finite order equal to a prime or prime power.

We now see that there exists finite fields with 5 (5^1) members and 343 (7^3) members. In fact,
the field used by the AES has 256 members which can be seen to be a prime power, 256 =
2*2*2*2*2*2*2*2 = 2 8 . However, there is no finite field with order 12 as 12 = 2*2*3, and 12 is thus
not a prime power.

All finite fields of the same order are structurally identical, ∀p∈ℙ, ∀n∈ℕ finite fields of F (p) G n
equivalent order are unique up to isomorphism. (Jackson 2017) Isomorphic structures display
equivalent algebraic behavior. (Daemen & Rijmen 2002)

Finite fields ∀p∈ℙ, ∀n∈ℕ, where n>1, can be represented in several ways. (Daemen & Rijmen F (p) G n

2002) The representation of members by means of polynomials with coefficients over F p is F (p) G n
the method implemented by the specification of the AES. (Daemen & Rijmen 2002) As well, for finite fields
with an order that are a prime power, the additive and multiplicative operations cannot be
executed as modular arithmetic. (Daemen & Rijmen 2002) In the next sections, we explain this
representation and it's a form of arithmetic.

85

Section 7 : Galois Field Arithmetic

7.1 : Prime Fields

The transformations implemented by the AES operate within the Galois Field of 256 members
known as . (Paar & Pelzi 2009) In more detail, Rijndael's Galois Field, which the AES F (2) G 8
implements, only allows numbers representable by 8 bits. Due to the property of closure, we are
assured that all mathematical operations defined in the field result in an 8-bit number. Thus
operands and resultants are limited to the range , represented by numbers from 0 to ≤ i 2 0 < 8
255

Within this algebraic structure we redefine the arithmetic operations of addition, subtraction,
multiplication, and division such that these operations, when performed on the underlying set,
remain consistent with the behaviour of an infinite set. (Paar & Pelzi 2009) When a system such as this
has been properly defined, it allows us to perform finite field arithmetic, that is, perform
operations adhering to the necessary arithmetic laws with a field of finite members as opposed
to infinite, like the fields of rational or real numbers. (Paar & Pelzi 2009) Galois Field Arithmetic has
become integral to many modern applications such as linear block codes in coding theory,
Reed–Solomon error correction, and in cryptography algorithms such as the AES encryption
algorithm. (Gallian 2016) While, by definition, no finite field is infinite, there are infinitely many finite
fields. This section describes how these arithmetic operations have been defined for the AES.

As we have shown, the order of a finite field is necessarily of the form p n for p ∈ ℙ, n ∈ ℤ + . Our
first example of finite field arithmetic, and perhaps the most intuitive, are operations within fields
of prime order p n , where p∈ℙ and n = 1 e.g. = {0, 1, . . . , (p − 1)}. Operations in a prime F (p) G
field employ the system of modular arithmetic, using the field characteristic as the F (p) G
modulus. (Daemen & Rijmen 2002) Thus the prime field operations are "integer addition modulo p" (Daemen &

Rijmen 2002 p. 13) and "integer multiplication modulo p". (Daemen & Rijmen 2002 p. 13) We consider the finite field
of order 5, GF(5) = {0,1,2,3,4}. The additive inverse is , while any nonzero (−a) 0 mod p a + =
multiplicative inverse is given by a·a −1 =1. Tables 13, 14, 15, and 16, shown below, describe
binary addition and multiplication, as well as the additive and multiplicative inverse of each field
element.

86

addition

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

additive inverse

-0 = 0

-1 = 4

-2 = 3

-3 = 2

-4 = 1

multiplication

* 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

multiplicative inverse

0 -1
DNE

1 -1 =1

2 -1 =3

3 -1 =2

4 -1 =4

Tables 13, 14, 15, 16

As all finite fields used in the description of the AES have a characteristic of 2, the mechanisms
of arithmetic in are necessary to understand. Using the characteristic of for F (2) G F (2) G
modular arithmetic, the only possible values are 0 and 1, as a modulus of 2 only permits these
integer remainders. Thus (also F 2 , ℤ/ 2 ℤ or ℤ 2) is the Galois Field of two members, F (2) G

, which happens to be the field of least order. The two elements are nearly F (2) 0, } G = { 1
always called 0 and 1, being the additive and multiplicative identities, respectively. As defined,
arithmetic is done modulo 2, yielding Tables 17 and 18:

addition and subtraction correspond to the logical XOR operation. (Daemen & Rijmen 2002) F (2) G

+/- 0 1

0 0 1

1 1 0

Table 17

 multiplication corresponds to the logical AND operation. (Daemen & Rijmen 2002) F (2) G

* 0 1

0 0 0

1 0 1

Table 18

87

7.2 : Extension Fields F (p) G n

However, the field used by the AES has far more than two members. The AES implements the
finite field containing 256 members, denoted GF(2 8) chosen specifically because each of the
field elements can be represented by a single 8-bit byte. (Paar & Pelzi 2009) AES considers every
operand byte as a GF(2 8) field member and all data manipulation performed by the AES is
within this finite field. (Paar & Pelzi 2009)

In Section 6.2 we show that (ℤ, +, *) does not form a field because (ℤ\{0}, *) is not a
multiplicative group. In general, (ℤ n , +, *) is not a finite field because only those members
coprime to the order have inverses. For example, ℤ 10 /{0} = {1, 2, 3, 4, 5, 6, 7, 8, 9} under
modular multiplication is not a group. When n is a prime number, n∈ℙ, addition and
multiplication modulo a prime number p form a finite field. (Daemen & Rijmen 2002) ℤ 5 /{0} ={1, 2, 3, 4} with
modular multiplication is the Abelian group ℤ 5

* , therefore, (ℤ 5 , +, *) is a finite field. (Daemen & Rijmen 2002)
The characteristic of prime fields is the order, we shall show that modular arithmetic does not
allow us to construct a finite field with order of p n for p∈ℙ and n∈ℕ where n>1.

Fields, with an order that is a prime power p n where n > 1, are known as Extension Fields. (Paar &

Pelzi 2009) We will represent order p n finite fields using . (Daemen & Rijmen 2002) If the order of F (p) G n
 is not prime, the field operations cannot be represented by modular addition and F (p) G n

multiplication. (Daemen & Rijmen 2002) We will see that extension fields members require both a notation
for its members and a method of arithmetic. These members are represented as polynomials,
and that computation in an extension field is achieved by performing modular polynomial
arithmetic.

88

7.3 : Representation F (p) G n

We represent an extension field using the polynomial basis. (Cid Murphy Robshaw 2006) By this method, a
field's elements are representable by a set of order and with two polynomial F (p) G n pn
operations. (Paar & Pelzi 2009) The AES considers these polynomials as abstract entities only, while
they are represented by polynomial equations, these equations are never evaluated. (Daemen & Rijmen

2002) As coefficient values are defined by a field F, we say it is a polynomial over . (Cid Murphy Robshaw F

2006) Elements of are thus represented as polynomials of degree less than n over GF(p). F (p) G n
Generally, a polynomial over a field is denoted: F

(x) x x .. x x b = bn 1−
n 1− + bn 2−

n 2− + . + b2
2 + b1 + b0

where x is known as the indeterminate of the polynomial, and the coefficients are members
. (Daemen & Rijmen 2002) The degree of a polynomial is if , and L is the ∈ GF (2) bi L 0, ∀ i L bi = >

smallest number with this property. (Daemen & Rijmen 2002) We will denote the set of polynomials over a
given field by , the set of polynomials over a field of degree below L is denoted by F [x] F F

, such that the AES field GF(2 8) = GF(2)|8 . (Daemen & Rijmen 2002) "In computer memory, the [x]∣L F
polynomials in with a finite field can be stored efficiently by storing the coefficients [x]∣L F F L
as a string". (Daemen & Rijmen 2002 p. 13)

89

7.4 : Rules of Arithmetic F (p) G n

Now that we have a form of representation for extension field elements, we are able to define
polynomial arithmetic. Polynomials over field , are capable of addition and multiplication F (p) G
but the coefficients are computed in and must be reduced modulo p. (Paar & Pelzi 2009) For F (p) G
example, compare the result of the equations from Appendix A Polynomial Arithmetic under
GF(11): (Dong 2010)

(x 5 + 3x 3 + 4)+(6x 6 + 4x 3) = 6x 6 + x 5 + 7x 3 + 4

(x 5 + 3x 3 + 4)-(6x 6 + 4x 3) = 5x 6 + x 5 +10x 3 + 4

(x 5 + 3x 3 + 4)*(6x 6 + 4x 3) = 6x 11 + 7x 9 + 4x 8 + 3x 6 + 5x 3

(3x 6 + 7x 4 + 4x 3 + 5) ÷ (x 4 + 3x 3 + 4) = 3x 2 + 3x + 3 with remainder x 3 + 10x 2 + 4x +1

If a(x)= a n x n + a n-1 x n-1 + ... + a 0 and b(x)= b m x m + b m-1 x m-1 + ... + b 0 are two polynomials over a field
F, then a(x) = p(x)*b(x)+r(x) for unique r(x) p(x) ∈ F where r(x) is of degree smaller than n. (Dong

2010) The polynomial r(x) is called the remainder of a(x) modulo b(x). (Dong 2010) For polynomials
a(x), b(x), p(x) ∈ F, if p(x) divides a(x)-b(x), then a(x) is congruent to b(x) modulo b(x). (Dong 2010)
We denote the modular equivalence of polynomials in a similar fashion to the integers written
a(x) ≡ b(x) mod p(x). (Dong 2010)

A polynomial d(x) is irreducible over the field iff there exist no two polynomials a(x) and F (p) G
b(x) with coefficients in such that d(x) = a(x) × b(x), where a(x) and b(x) are of degree > F (p) G
0. (Daemen & Rijmen 2002 p. 15) Irreducible polynomials are roughly comparable to prime numbers, i.e.,
their only factors are 1 and the polynomial itself. (Cid Murphy Robshaw 2006)

In contrast to prime fields, operation performed in an extension field, those fields of the form
, requires two moduli. These moduli are the polynomial modulus and the integer F (p) G n

modulus. Arithmetic results must first be reduced by the polynomial modulus and then the
remainder's coefficients must be reduced by the integer modulus. An example shown in Figure
16, below, is 2x 2 +x 4 ≡ 0 mod (x 2 -1) in GF(3)|2 is confirmed if we first reduce by the irreducible
polynomial modulus x 2 -1 to obtain a remainder of 3. This remainder is then reduced by the field
characteristic 3: 3 ≡ 0 mod 3 confirming the examples equivalence. (Dong 2010)

90

Figure 16

Extension field addition is executed similar to that of prime fields. In , we perform addition F (p) G
of each polynomial's like terms, each term is reduced by the prime characteristic and our result
is the remainder. (Paar & Pelzi 2009) Generally, under , the same polynomial terms are summed F (p) G n
then reduced using the prime field characteristic. (Paar & Pelzi 2009) The degree of c(x) is at most the
maximum of the degrees of a(x) or b(x) and as the polynomial modulus used to construct the
field limits their degree, the addition is not only closed but is performed without the need for
reduction by the polynomial modulus. (Daemen & Rijmen 2002) Addition of polynomials is associative and
commutative. (Daemen & Rijmen 2002) The neutral element or additive identity, 0, is the polynomial with
all coefficients equal to 0. (Daemen & Rijmen 2002) The inverse of the polynomial basis is found by
replacing each coefficient by its inverse element in F. (Daemen & Rijmen 2002) Thus the structure

 is an Abelian group. (Daemen & Rijmen 2002) F (p)∣n, > < G +

Extension field multiplication is executed via an approach similar to the case of multiplication in
prime fields. In , we multiply the two representative polynomials then reduce each term F (p) G
by the field characteristic and consider only the remainder. (Paar & Pelzi 2009) In extension fields, the
product of the multiplication is divided by an irreducible polynomial, and we consider only the
remainder after reduction by the field characteristic. (Paar & Pelzi 2009) With respect to polynomial
addition, polynomial multiplication is associative, commutative, and distributive. (Daemen & Rijmen 2002)
In order to make the multiplication closed over , we select a polynomial m(x) of degree F (p)∣n G
n. (Daemen & Rijmen 2002) The multiplication of two polynomials a(x) and b(x) is then defined as the
algebraic product of the polynomials modulo m(x): . (Daemen & Rijmen 2002) (x) ≡ a(x) × b(x) (mod m(x)) c
The group identity or neutral element is the polynomial of degree 0 and with coefficient of x 0
equal to 1. (Daemen & Rijmen 2002) Distributive As well, it holds that

. (Daemen & Rijmen 2002) The structure (x) • (b(x) c(x)) a(x) • b(x) a(x) • c(x) a + = +
 is a commutative ring. (Daemen & Rijmen 2002) F (p)∣n, , · < G + >

We now show that for special choices of the reduction polynomial m(x), the structure F (p)∣n G
is a field. (Daemen & Rijmen 2002) Similar to standard modular arithmetic, the multiplicative inverse is
found by means of the Extended Euclidean Algorithm (EEA). (Daemen & Rijmen 2002) Given a polynomial

91

for which we would like the inverse, the EEA provides polynomials and such that (x) a (x) b (x) c
. (Daemen & Rijmen 2002) , the greatest common (x)×b(x) (x)×c(x) a + m cd(a(x), (x)) = g m cd(a(x), (x)) g m

divisor of the polynomials and , is always equal to 1 iff is irreducible. (Daemen & Rijmen (x) a (x) m (x) m

2002) Applying modular reduction with an irreducible we get: . (Daemen (x) m a(x) × b(x) ≡ 1 (mod m(x))

& Rijmen 2002) By algebraic manipulation we find that and thus b(x) is the (x) (x) mod m(x) b 1− = a
inverse element of a(x). (Daemen & Rijmen 2002) Therefore, if we let F be the field , with an F (p) G n
irreducible modulus m(x) of degree n over , the structure is a field of F (p) G F (p)∣n, , · < G + >
order p n , represented by the polynomial basis over of degree less than n. (Dong 2010)(Daemen & F (p) G

Rijmen 2002) For example, we can represent the extension field GF(3 2) by a polynomial basis of
degree less than 2 using the irreducible polynomial , shown by Table 19 and 20 below. (Dong x2 + 1

2010)

92

+ 0 1 2 x x+1 x+2 2x 2x+1 2x+2

0 0 1 2 x x+1 x+2 2x 2x+1 2x+2

1 1 2 0 x+1 x+2 x 2x+1 2x+2 2x

2 2 0 1 x+2 x x+1 2x+2 2x 2x+1

x x x+1 x+2 2x 2x+1 2x+2 0 1 2

x+1 x+1 x+2 x 2x+1 2x+2 2x 1 2 0

x+2 x+2 x x+1 2x+2 2x 2x+1 2 0 1

2x 2x 2x+1 2x+2 0 1 2 x x+1 x+2

2x+1 2x+1 2x+2 2x 1 2 0 x x+2 x+2

2x+2 2x+2 2x 2x+1 2 0 1 x+2 x x+1

Table 19

+ 0 1 2 x x+1 x+2 2x 2x+1 2x+2

0 0 0 0 0 0 0 0 0 0

1 0 1 2 x x+1 x+2 2x 2x+1 2x+2

2 0 2 1 2x 2x+2 2x+1 x x+2 x+1

x 0 x 2x 2 x+2 2x+2 1 x+1 2x+1

x+1 0 x+1 2x+2 x+2 2x 1 2x+1 2 x

x+2 0 x+2 2x+1 2x+2 1 x x+1 2x 2

2x 0 2x x 1 2x+1 x+1 2 2x+2 x+2

2x+1 0 2x+1 x+2 x+1 2 2x 2x+2 x 1

2x+2 0 2x+2 x+1 2x+1 x 2 x+2 1 2x

Table 20

93

7.5 : Representation GF(2 n)

For any prime power there is a single finite field, hence all representations of are F (p) G n
isomorphic. (Paar & Pelzi 2009) Despite this equivalence, the representation has an impact on the
implementation complexity. (Paar & Pelzi 2009) Thus the AES finite field members can be represented in
several different ways. When the prime characteristic is 2, it is conventional to express elements
of as binary numbers, with each term in a polynomial represented by one bit in the F (p) G n
corresponding element's binary expression. (Daemen & Rijmen 2002)

Extension fields are called binary fields or characteristic-two fields if their order is of the form
2 n . (Dong 2010) Fields with a characteristic of two are particularly efficient for implementation in
modern day, binary based, hardware and software. (Dong 2010) This is because any extension field
with a characteristic of two, GF(2 n), has elements that, rather than being represented as
integers, are representable as polynomials with coefficients in GF(2) = {0, 1}, known as binary
polynomials. (Dong 2010) GF(2 n) elements can be represented as n-bit strings with each bit position
corresponding to polynomial coefficients of the same position. (Dong 2010) Members of this field
represented by the polynomial basis have a maximum degree of (n−1), so that there are n
coefficients in total for every element and 2 n such polynomials in the field. (Dong 2010) For the field

, which is implemented by the AES, there are exactly 2 8 = 256 such polynomials. (Paar & Pelzi F (2) G 8

2009) Each polynomial representation is a bitstring consisting of the bits b b b b b b b b } { 7 6 5 4 3 2 1 0
represented by a polynomial basis over : F (2) 0, } G = { 1

x x x x x x x xb7
7 + b6

6 + b5
5 + b4

4 + b3
3 + b2

2 + b1
 + b0 = ∑

7

1=0
bi

i

Example: the hexadecimal value ‘57’ (binary 01010111) corresponds with polynomial (NIST 2001)

→ x x x x x x x b7
7 + b6

6 + b5
5 + b4

4 + b3
3 + b2

2 + b1
 + b0

→ 0 * x7 + 1 * x6 + 0 * x5 + 1 * x4 + 0 * x3 + 1 * x2 + 1 * x + 1 x6 + x4 + x2 + x + 1

The following are equivalent representations in a characteristic 2 finite field: (NIST 2001)

Polynomial: x 6 + x 4 + x 2 + x + 1 Binary: {01010111} Hexadecimal: {57}

94

During the operation of the AES, the most basic data objects we manipulate are 8-bit bytes. (NIST

2001) All possible byte values may be expressed by the polynomial basis of GF(2) with degree
eight or fewer. (NIST 2001) Due to all members of GF(2 8) being representable by a single byte length
bitstring representing the polynomial basis over GF(2), AES byte arithmetic is represented by
polynomial arithmetic over the field GF(2). (NIST 2001) Addition and Multiplication of bytes is
executed by polynomial arithmetic of corresponding polynomial coefficients in the underlying
field of GF(2) modulo an irreducible binary polynomial of degree 8. (Paar & Pelzi 2009) Therefore, to
define byte arithmetic, the AES provides a suitable reduction polynomial m(x) given by: (Paar & Pelzi

2009)

 or 11B in hexadecimal notation (x) x) m = (8 + x4 + x3 + x + 1

95

7.6 : Addition GF(2 8)

The AES key schedule and key addition layer rely on addition. (Paar & Pelzi 2009) The AES implements
addition in the extension field GF(2 8). (Daemen & Rijmen 2002) Extension field addition is generally
executed by first using a polynomial basis to represent field elements, then performing modular
arithmetic in the underlying field. (Paar & Pelzi 2009) For the AES, polynomial coefficients are handled in
the underlying field GF(2). (Paar & Pelzi 2009) In GF(2), the sum of two members is given by their
integer sum modulo 2. (Paar & Pelzi 2009) We have seen that addition and subtraction modulo 2 are the
same operation as displayed in Table 17. GF(2) is defined by modulo 2 arithmetic by which
addition and subtraction are defined to be the same operation as bitwise XOR. Therefore the
operation of polynomial summation and its inverse consists of an XOR between the coefficients
of equal-powered terms. Let A(x),B(x) ∈ GF(2 n), we represent their sum or difference by: (Paar & Pelzi

2009)

(x) (x) (x) x mod 2C = A + B = ∑
n 1−

i=0
ci

i ≡ ai + bi

(x) (x) (x) x mod 2C = A − B = ∑
n 1−

i=0
ci

i ≡ ai − bi

An example in GF(2 8) is the sum of the polynomials {57} and {83} computed: (Paar & Pelzi 2009)

A(x)= x 6 + x 4 + x 2 + x + 1

B(x)= x 7 + x + 1

C(x)= x 7 + x 6 + x 4 + x 2

96

7.7 : Multiplication in GF(2 8)

Extension field multiplication is the core operation of the AES MixColumn function. (Paar & Pelzi 2009)
The AES implements multiplication in the field GF(2 8). (Paar & Pelzi 2009) Extension field multiplication
is generally executed by first using a polynomial basis to represent field elements, then
performing modular arithmetic in the underlying field. (Paar & Pelzi 2009) For the AES, polynomial
coefficients are handled in the underlying field GF(2). (Paar & Pelzi 2009) We use the "•" symbol to
denote extension field multiplication. GF(2 n) extension field elements represented by a GF(2)
polynomial basis are multiplied using arithmetic polynomial multiplication: (Paar & Pelzi 2009)

(x) (x) (x) (a x .. a) b x .. b) (c x .. c) C = A · B = m 1−
m 1− + . + 0 · (m 1−

m 1− + . + 0 = 2m 2−
2m 2− + . + 0

where: , b mod 2 c0 = a0 0 , , b b mod 2 c1 = a0 1 + a1 0 ... b mod 2 c2m 2− = am 1− m 1−

The coefficients a i , b i and c i ∈ GF(2), and that coefficient arithmetic is performed in GF(2). (Paar &

Pelzi 2009) A product polynomial C(x) with degree higher than (n−1) must be reduced such that
results are representable by the AES polynomial basis of degree 7 and below. Thus the AES
supplies an irreducible polynomial of degree n with coefficients from m(x) = x8 + x4 + x3 + x + 1
GF(2). An example in GF(2 8) is the product of the elements denoted by {57} and {83}: (Gladman 2003)

{57} • {83} = {C1}, or:

) (x) (x6 + x4 + x2 + x + 1 + 7 + x + 1
x) x) x) = (13 + x11 + x9 + x8 + x7 ⊕ (7 + x5 + x3 + x2 + x ⊕ (6 + x4 + x2 + x + 1

 = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

 modulo x x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1 8 + x4 + x3 + x + 1 = x7 + x6 + 1

97

7.8 : Polynomials with Coefficients in GF(2 8)

In the AES specification, data words consisting of 4-byte columns of the state array can be
modeled by polynomials over GF(2 8) of the form: . (NIST 2001) These (x) x x x a = a3

3 + a2
2 + a1

 + a0
polynomials have a degree of four with coefficients that are values of the AES extension field.
We will denote such a collection by a 4-byte vector [a 0 , a 1 , a 2 , a 3].

(NIST 2001) These polynomials
behave differently than polynomials previously used to represent individual field elements. While
both polynomial definitions use the same indeterminate, x, the coefficients of this new definition
are extension field elements defined by bytes, instead of bits. (NIST 2001) The multiplication of
four-term polynomials uses a different reduction polynomial, defined below. (NIST 2001)

Addition of these new word value representations is performed by adding the extension field
coefficients of like powers of the indeterminate x. (NIST 2001) If we let a(x) and b(x) be polynomials
over : F (2) G 8

and (x) x x x a = a3
3 + a2

2 + a1
 + a0 (x) x x x b = b3

3 + b2
2 + b1

 + b0

then the addition operation is a combination of corresponding bytes of each word, the XOR of
the complete word values:

(x) (x))x)x)x)x a + b = (a3 ⊕ b3
3 + (a2 ⊕ b2

2 + (a1 ⊕ b1
1 + (a0 ⊕ b0

0

Multiplication of these new word value representations is performed in two steps. (NIST 2001) If we
let a(x) and b(x) be polynomials over : F (2) G 8

and (x) x x x a = a3
3 + a2

2 + a1
 + a0 (x) x x x b = b3

3 + b2
2 + b1

 + b0

then, first, their polynomial product is algebraically expanded. (NIST 2001) coefficients (x) (x)b(x) c = a
of same powered terms are collected to give:

(x) x x x x x x c = c6
6 + c5

5 + c4
4 + c3

3 + c2
2 + c1

1 + c0

98

•b c0 = a0 0 •b ⊕a •b c1 = a1 0 0 1 •b ⊕a •b ⊕a •b c2 = a2 0 1 1 0 2

•b ⊕a •b ⊕a •b ⊕a •b c3 = a3 0 2 1 1 2 0 3 •b ⊕a •b ⊕a •b c4 = a3 1 2 2 1 3 •b ⊕a •b c5 = a3 2 2 3

•b c6 = a3 3

Often, can no longer be represented by a 4-byte vector so we must reduce modulo a (x) c (x) c
polynomial of degree 4. (NIST 2001) For the AES algorithm, this is accomplished with the polynomial
x 4 + 1, so that . (NIST 2001) The modular product of a(x) and b(x), denoted mod (x 1) x xi 4 + = (i mod 4)

, is given by the four-term polynomial d(x): (NIST 2001) (x) ⊗ b(x) a

d x x x d(x) = 3
3 + d2

2 + d1
 + d0

Figure 17

Figure 18

AES operations consisting of multiplication by a fixed polynomial may be written as the (x) a
matrix multiplication, shown in Figure 18, above and solved for by the system of equations
shown in Figure 17, above. Because is not an irreducible polynomial over , x4 + 1 F (2) G 8

multiplication by a fixed polynomial is not necessarily invertible. (NIST 2001) A x) x4 + 1 = (+ 1 4
polynomial has an inverse if the polynomial does not divide it. (NIST 2001) For these (x) a x + 1
operations, the AES algorithm specifies a fixed four-term polynomial that does have an
inverse: (NIST 2001)

(x) 03}x 01}x 01}x 02} a = { 3 + { 2 + { + { (x) 0B}x 0D}x 09}x 0E} a 1− = { 3 + { 2 + { + {

99

Part 3

A Specification
of the
Advanced Encryption Standard

100

Section 8 : Notation and Conventions

8.1 : Inputs and Outputs

The specified input parameters and output resultants of the AES algorithm are represented by
sequences of binary digits, or "bit" values. (NIST 2001) Binary values are sequences defined by a
base-2 numeral system represented by the concatenation of any mechanism possessing one of
two exclusive states as described in Section 1.1. Bit sequences in this document will be
represented as ordered series comprised of and states. 1 0

When we act upon a fixed length series of bits we speak of processing a singular "block". (NIST

2001) The number of bits a given fixed length series contains is then known as it's block length, or
block size. (Paar & Pelzi 2009) The block length specified by the AES is 128 bits, meaning that the
plaintext and ciphertext blocks processed and output by the AES may only be 128 bits in
size. (NIST 2001) Contrarily, the cipher key length specified by the AES may vary between 128, 192
or 256 bits but must remain fixed during a given execution. (NIST 2001)

The AES algorithm is a subset of the Rijndael block cipher. (Daemen & Rijmen 2002) Rijndael supports
variable block and key lengths, allowing both to be specified as any multiple of 32, between 128
and 256 bits. (Daemen & Rijmen 2002) The reason for AES's specific parameterization of the Rijndael
cipher is due to the focus of testing during the AES selection process. (NIST 2001) As other
configurations were not subject to the same rigorous testing and peer review, they are not
permitted by this standard. (LFS 2018)

The location of each bit in a given sequence is defined using a zero-based ordering. (NIST 2001) The
initial element is assigned a base index of 0 and each subsequent element is indexed by the
subsequent natural number from to . This distinction is represented by 0 sequence length 1) (−
subscripting the index, . Thusly, a single bit is specified by , where and , i bi ∈ {1, } b 0 ≤ i 28 0 < 1

 or depending on the configuration (NIST 2001) ≤ i 92 0 < 1 ≤ i 56 0 < 2

The smallest bit sequence, or basic processing unit, addressed by the operations comprising
the AES is known as a byte. (NIST 2001) A byte most commonly consists of a length eight bit
sequence representative of a single entity, in this case we implement eight bit bytes as
operands and resultants during the computations performed by AES.

AES byte value representations result from concatenation of eight bits enclosed by braces:

101

, b , b , b , b , b , b , b } { b7 6 5 4 3 2 1 0

where individual bit values . During the computations performed by AES, bytes values ∈ {0, 1} b
are interpreted as finite field elements of polynomial representation:

x x x x x x x xb7
7 + b6

6 + b5
5 + b4

4 + b3
3 + b2

2 + b1
 + b0 = ∑

7

1=0
bi

i

For example, identifies the specific finite field element . 10100011} { x x7 + 5 + x + 1

Binary-coded values of increasing length become difficult for human
comprehension and manipulation. Hexadecimal numerals of base 16
are a popular alternative, allowing direct conversion from four binary
digits to a single hexadecimal digit. Table 21 provides a reference for
this conversion. Hexadecimal representation of byte values is
convenient. A series of eight bits is divided into the four leftmost higher
indexed bits and the four rightmost lower indexed digits. A single byte
value in the range of [0000 0000, 1111 1111] then becomes [00, ff]
under hexadecimal representation.

For example, the byte value is denoted . 01010011} { A3} {

Bit Pattern Character
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Table 21

102

8.2 : Arrays

During the execution of AES, byte operands are held in abstract collections known as
arrays. (NIST 2001) Formally, arrays are zero indexed data structures representing disk information
with some mechanism of addressability by the CPU, necessary for data processing. (Greenlaw & Hoover

1998) While an array may hold any data object, byte arrays partition bit sequences into contiguous
groups of eight, providing each with an index . The block and key lengths described n
previously, specifically 128, 192, and 256 bits, may also be referenced by their byte lengths 16,
24, and 32 respectively. (NIST 2001)

For AES operand and resultant arrays, denoted by , constituent bytes are referenced in two a
ways. Similar to the representation of individual elements of a bit sequence, the nth-element of
a given array is expressed , where is the array index, as well, also expresses an a an n [n]a
individual byte of index . For either representation the range of reflects cipher block or key n n
length: 128 bits, ; 192 bits, ; 256 bits, . (NIST 2001) ≤ n 6 0 < 1 ≤ n 4 0 < 2 ≤ n 2 0 < 3

Arrays of bytes are represented: (NIST 2001 p. 8)

 a a ... a a0 1 2 15

The ordering of individual bits can be seen from the 128-bit input sequence: (NIST 2001 p. 8)

input input ... input input input0 1 2 126 127

An array of bytes and the bit locations within: (NIST 2001 p. 9)

, input , ... , input };a {input0 = 0 1 7

, input , ... , };a {input1 = 8 9 input15

⋮

, input , ... , input };a {input15 = 120 121 127

103

The pattern in general: (NIST 2001 p. 9)

. , , ... , input } a {inputn = 8n input8n+1 8n+7

Input bit sequence 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ...

Byte Number 0 1 2 ...

Byte Position 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 ...

Table 22

104

8.3 : The State

Cipher transformations performed by the AES are modeled by a two dimensional array called
the State. Two dimensional array position is specified by the use of two indices. The State
consists of four rows of bytes, each containing bytes, where is the block length divided bN bN
by 32. (NIST 2001) To express an element of the State s, we use or where s is a given sr, c [r,]s c
State, r is the row number and is the column number . (NIST 2001) This ≤ r 0 < 4 c ≤ c b 0 < N
standard specifies a single block length of 128 bits, thusly is fixed at 4 and the value of c is bN
always in the range . (NIST 2001) ≤ c 0 < 4

Upon execution, the AES maps the byte elements of input blocks, onto the , in , ..., in } {in0 1 15
state array in the order this transformation is modeled , s , , , s , s , , ...,s0, 0 1, 0 s2, 0 s3, 0 0, 1 1, 1 s2, 1 s3, 1
by: (NIST 2001)

[r, c] in[r 4c] for 0 ≤ r and 0 ≤ c b s = + < 4 < N

AES transformations perform necessary encryption or decryption and the state bytes are
mapped onto the output array, : (NIST 2001) , out , ..., out } {out0 1 15

ut[r 4c] s[r, c] for 0 ≤ r and 0 ≤ c b o + = < 4 < N

This process is depicted in Figure 19, below.

105

Figure 19

The State can be represented as an array of it's columns. (NIST 2001) While 8-bit bytes are the
smallest operand addressed by AES, many of the procedures operate on an entire State
column. (NIST 2001) As the AES fixes row number at four, a State column possesses 4 bytes and r
is thus a 32-bit vector. (NIST 2001)

This specification defines 32-bit vectors as a single "word", and provides an alternate definition
of the State as a one dimensional array of 32-bit words, of length. (NIST 2001) The column bN
number is then the index of a given word array, while row number r indexes an individual c
word's constituent bytes. (NIST 2001) A single word is specified by , where and the State wi ≤ i 0 < 4
may be defined as an array of four words with constituent bytes: w , w , w , w } { 0 1 2 3

{s , s , , }w0 = 0, 0 1, 0 s2, 0 s3, 0

{s , s , , }w1 = 0, 1 1, 1 s2, 1 s3, 1

{s , s , , }w2 = 0, 2 1, 2 s2, 2 s3, 2

{s , s , , }w3 = 0, 3 1, 3 s2, 3 s3, 3

128-bit plaintext and ciphertext blocks can also be defined as consisting of 32-bit words. bN = 4
Cipher keys are also defined by their word length, consisting of 32-bit words, where kN

106

. The AES has specified the key lengths of 128, 192, and 256 bits defining key k 4, , }N = { 6 8
spaces of . (Daemen & Rijmen 2002) The Rijndael cipher, of which AES is a subset, has a ℤ2

128 ℤ2
192 ℤ2

256
key space of . (Daemen & Rijmen 2002) ℤ2

32 Nk*

Like Rijndael the AES is a key-iterated block cipher, the state undergoes a number of
transformation rounds, or iterations, defined by the key length. The number of these rounds is
denoted , where is 10, 12, or 14, for of 4, 6, or 8. (NIST 2001) See the effect of in rN rN kN kN
Figure 20 below.

Figure 20

107

8.4 : The Substitution Box (S-box)

The Substitution box (S-box) is a cryptographic primitive, typically included as a component in
block cipher design. This document will address the AES implementation alone. Desirable is a
substitution which makes the relationship between output ciphertext and input key augmented
plaintexts as complex as possible. This property, known as confusion, is one of two governing
the operation of a secure cryptographic cipher first identified by Claude Shannon in his 1945
report A Mathematical Theory of Cryptography. (Shannon 1945)

In general, an n×m S-Box, input blocks of size n are substituted with output blocks of size m,
implemented as a lookup table with 2 n m-bit members. We study the structure of the particular
S-box implemented by the Rijndael cipher, of which the Advanced Encryption Standard (AES)
cryptographic algorithm is a subset. This S-Box is based on an invertible transformation applied
on the Galois field . This transformation generates an 8×8 S-box, F (2) G 8

, implemented as a member square lookup table of size 16.The (x) GF (2) →GF (2) S : 8 8 56 28 = 2
AES S-box models a function on polynomials over denoted mapping F (2) G (b) b′ = S
representative 8-bit inputs , to 8-bit outputs . b b′

Invented by Kaisa Nyberg, the AES S-box transformation is known as the "Nyberg S-box". (Nyberg

1991) The transformation can be expressed by the function . (NIST 2001) We find the Ab b′ = 1− ⊕ c
multiplicative inverse of the Input in Rijndael's finite field,

, then perform an affine transformation. (Daemen & Rijmen F (2) GF (2)∣[8] (x x x x 1) G 8 = 8 + 4 + 3 + +

2002) The S-Box transformation is be expressed in matrix form by Figure 21 below:

Figure 21

where bits are the multiplicative inverse , and bits are , the b , ..., b } { 7 0 b 1− b , ..., b } { ′7 ′0 b′
result.

108

However, this equation is not to be interpreted as the sort matrix multiplication used for linear
algebra computations. As product vector members would incorrectly be the summation of each
row member multiplied by the column member of corresponding index, as described in Section
5.7. In the case of the representation selected for the AES, we recall that the addition of F (2) G 8

 is a bitwise addition , or bitwise XOR and multiplication is done modulo c od 2 m
, as described in Sections 7.7, 7.8. Product vector members are the x x x x 1) (8 + 4 + 3 + +

XOR of each result of modular multiplication between row and column members of
corresponding index. For example, has a multiplicative inverse in of , 95}{ F (2) G 8 95} 8A}{ 1− = {
or in binary. (NIST 2001) The full transformation of is shown by Figure 22 below: 10001010} {

Figure 22

The entity which models a cryptographic S-box is implemented as a table lookup, defined by a
square matrix of size 16, shown by Table 23, below. (NIST 2001) The AES S-box lookup values can
then be constructed in three steps by first supplying all potential input values over the Rijndael's
Galois field () then composing two transformations: (NIST 2001) F (2) G 8

1. Initialize the S-box with all values in represented by 256 byte values b i = {0, 1, …, F (2) G 8
255} in ascending sequence. When represented in a square matrix the first row contains {00},
{01}, …, {0F}; the second {10}, {11}, … {1F}; and so on. By this method, the value of the byte at
column x, row y, is {xy}. These values then undergo two transformations.

2. We first map the value {00} to itself, then for each subsequent value we determine the
multiplicative inverse in the finite field . F (2) G 8

3. Each output byte produced is considered as the 8 bit collection
, to be transformed by the following affine matrix: (NIST 2001) , b , b , b , b , b , b , b } { b7 6 5 4 3 2 1 0 F (2) G

109

 b′i = bi⊕ b(i+4)mod8 ⊕ b(i+5)mod8 ⊕ b(i+6)mod8 ⊕ b(i+7)mod8 ⊕ ci for , ≤ i 8 0 <

Where is the ith bit of the value (NIST 2001) ci 63} { , c , c , c , c , c , c , c } 01100011} { c7 6 5 4 3 2 1 0 = {

To produce the inverse S-box seen in Table 24 we reverse the operations of the S-box, by first
calculating the inverse affine transformation followed by the multiplicative inverse, as in Figure
23, below. (NIST 2001)

Figure 23

SBox y
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

x

00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 23

110

InvSBox y
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

x

00 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
10 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
20 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
30 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
40 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
50 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
60 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
70 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
80 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
90 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a0 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b0 fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c0 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d0 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e0 a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f0 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

Table 24

While all functions impact the security of the AES block cipher, as the only nonlinear
transformation, the S-box plays a crucial role. (Easttom 2014) For this reason, proper S-box design
criteria are of the most importance, as it is these design criteria that work to make the AES
resistant to linear cryptanalysis, differential cryptanalysis, and algebraic attacks. (Grocholewska-Czurylo

2011) Non-linearity is achieved by ensuring that the maximum input-output correlation amplitude is
as small as possible and that the maximum difference propagation probability must be as small
as possible. (Daemen & Rijmen 2002) The use of finite field operation in S-Box construction yields linear
approximation and difference distribution tables that are close to uniform. (SKABMB 2010) The
multiplicative inverse has been determined to be highly non-linear and the substitution is
bijective, to ensure invertibility upon decryption. (SKABMB 2010) These properties provide security
against differential and linear attacks. (SKABMB 2010)

While the AES has specification for only a single S-Box implementation, (NIST 2001) the Rijndael
S-Box allows implementers to select a different configuration, (Daemen & Rijmen 2002) an option that
allows a deeper sense of security for those suspicions of a mathematical backdoor built into the
cipher. (Katiyar Jeyanthi 2019) The AES is able to provide resistance against differential and linear
cryptanalysis if an S-Box with "average" correlation and difference propagation properties is
used. (Krishnamurthy Ramaswamy 2008) Modern S-Box' cryptographic strength "is critically analyzed by
studying the properties of S-box such as nonlinearity, strict avalanche, bit independence, linear
approximation probability and differential approximation probability. (Farwa Shah Idrees 2016 p. 1)

111

Section 9 : Functions

9.1 : Cipher

This section details a method by which mechanism of the AES cryptographic transformations
maybe algorithmically implemented. As a key iterated product cipher, the AES executes a
number of round function iterations, on a block of plaintext bits , as discussed in Section 3.3.
E ach round transformation is executed in the same manner, with variance provided by round
values, generally called round constants and a round key. The AES is fundamentally composed
of a key schedule and a block cipher. The AES key schedule algorithm calculates round keys
and the AES cipher consists of the round function, specifically composed of four byte-oriented
transformations. The AES cipher is specifically a key-iterated block cipher, consisting of cipher
block transformation rounds, or iterations, defined by the key and block lengths.The number of
rounds is determined by: (NIST 2001)

r ax(Nb, Nk) N = 6 + m

Where is the number of round iterations, is the number of 32-bit words in the block, and rN bN
 is the number of 32-bit words in the key. (NIST 2001) Because is fixed to 4 and is at least kN bN kN

4 by the AES specification, the number of rounds Nr, is always determined by the number of
bytes in the key . (NIST 2001) kN

An initial AddRoundKey precedes the iteration of Nr-1 rounds, while the final round does not
include the MixColumns() transformation. (NIST 2001) These functions operate on arrays provided by
the State and RoundKey pointers. (NIST 2001) RoundKey addressed the key schedule generated by
the KeyExpansion() function, a vector consisting of 4-byte words. (NIST 2001) RoundKey words bN
are used each round iteration. (NIST 2001) The State transformations and KeyExpansion() function
referenced below are defined in the subsection that follow.

112

Cipher(State,RoundKey)

 begin

 AddRoundKey(State, RoundKey)

 for i = 1 to Nr

 Round(State, RoundKey+Nb*i)

 FinalRound(State, RoundKey+Nb*Nr)

end

Round(State,RoundKey)

 begin

 SubBytes(State);

 ShiftRows(State);

 MixColumns(State);

 AddRoundKey(round, State,RoundKey);

end

FinalRound(State, RoundKey)

 begin

 SubBytes(State) ;

 ShiftRows(State) ;

 AddRoundKey(round, State,RoundKey);

end

Figure 24

void Cipher(State, RoundKey) {

unsigned char round = 0;

AddRoundKey(0, State, RoundKey);

for (round = 1; round < Nr; ++round) {

 SubBytes(State);

 ShiftRows(State);

 MixColumns(State);

 AddRoundKey(round, State, RoundKey);

 }

 SubBytes(State);

 ShiftRows(State);

 AddRoundKey(Nr, State, RoundKey);

}

Figure 25

The AES Cipher() implements a round function composed of four byte-oriented transformations:
(NIST 2001)

SubBytes() individual byte substitution using the S-Box lookup table

ShiftRows() shifts each State array rows by a unique offset

MixColumns() mixes each State array column

AddRoundKey() adds the randomized Round Key to the State

113

9.2 : KeyExpansion

KeyExpansion(word cKey, word rKey,
Nk)

begin

 word temp

 for i = 0 step Nk

 rKey[i] = cKey[i];

 end for

 for i = Nk step 1 to Nb*(Nr+1)

 temp = rKey[i-1]

 if (i mod Nk == 0)

 temp = SubWord(RotWord(temp))

 xor Rcon[i/Nk]

 else if (Nk > 6 and i mod Nk == 4)

 temp = SubWord(temp)

 end if

 rKey[i] = rKey[i-Nk] xor temp

 end for

end

The function SubWord(x) applies an
S-Box substitution to each byte of an
input word. (Gladman 2003)

The function RotWord(x) converts an
input word [] , b , b , b b3 2 1 0

to an output []. (Gladman 2003) , b , b , b b0 3 2 1

Figure 26

KeyExpansion(byte* rKey, byte* cKey) {

byte r, c, k, tmp, t[4];

for (r=0;r<Nk*4;r++) rKey[r]=cKey[r];

for (r=Nk, k=(r-1)*4; r<4*(Nr+1); r++) {

 t[0]=rKey[k];t[1]=rKey[k+1];

 t[2]=rKey[k+2];t[3]=rKey[k+3];

 if (r % Nk == 0) {

 tmp = Sbox[t[0]]; t[0] = Sbox[t[1]];

 t[1] = Sbox[t[2]]; t[2] = Sbox[t[3]];

 t[3] = tmp;

 t[0]=t[0] ̂ Rcon[r / Nk];

 }

 #if defined(AES256)

 if (r%Nk==4){

 t[0]=Sbox[t[0]];t[1]=Sbox[t[1]];

 t[2]=Sbox[t[2]];t[3]=Sbox[t[3]];

 }

 #endif

 c=r*4; k=(r - Nk)*4;

 rKey[c]=rKey[k] ̂ t[0];

 rKey[c+1]=rKey[k+1] ̂ t[1];

 rKey[c+2]=rKey[k+2] ̂ t[2];

 rKey[c+3]=rKey[k+3] ̂ t[3];

 }

}

Figure 27

114

The AES and the Rijndael algorithm, of which the AES is a subset, are classified as Product
Ciphers. We introduced the structure of product ciphers in Section 3.3. Product ciphers execute
a number of round iterations, e ach round transformation is executed in the same manner, with
variance provided by round values, generally called round constants and a round key. (Van Tilborg &

Jajodia, 2011) A key schedule algorithm calculates round keys through the use of simple
cryptographic operations, such as S-boxes and P-boxes, on the input cryptographic key. (Van Tilborg

& Jajodia, 2011) KeyExspanison() is the AES key schedule.

The AES Cipher is parameterized with a set of input words of key material, and each of the bN
Nr rounds requires words of derived key data. (NIST 2001) Thus, KeyExpansion() results in a bN
total of words. (NIST 2001) The Key Expansion routine takes the Cipher Key pointer b(Nr) N + 1
cKey, which addresses the input key material, and the Round Key pointer rKey, which
addresses the round key memory. KeyExpansion() uses the rKey pointer to fill the linear array,
denoted rKey[i], with i in the range 0 ≤ i < Nb(Nr + 1).

The first words of the are copied from the contents of the . Each subsequent kN Keyr Keyc
word, rKey[i], is equal to the XOR of rKey[i-1] and rKey[i-Nk]. Prior to this XOR, for words of a
position that is a multiple of , if(i%Nk==0), a left cyclic shift, an SBox[] table lookup to the kN
word four bytes, and an XOR with a round constant, Rcon[i], is applied to rKey[i-1]. (NIST 2001) The
round constant word array, Rcon[i], contains the values given by [x (i-1) ,{00},{00},{00}], with x (i-1)
being powers of x in the field GF(2 8). (NIST 2001)

It must also be known that:

● KeyExpansion() for 256-bit Cipher Keys (Nk = 8) is different, if Nk = 8 and i%Nk ==4, for
every fourth word, table lookups are applied to rKey[i-1] prior to the XOR.

● The KeyExpansion routine does not need an inverse as the same key material
generated for encryption is required by decryption.

115

https://en.wikipedia.org/wiki/Product_cipher

9.3 : SubBytes

The transformation is a non-linear byte substitution that operates independently on ubBytes() S
each State byte. (NIST 2001) As the only non-linear transformation implemented, SubBytes()
guarantees the non-linearity of the AES. (NIST 2001)

SubBytes(State)

begin

for i = 0 step 1 4*Nb

State i = Sbox[State i]

end for

end

Figure 28

static void SubBytes(State* State) {

unsigned char r, c;

for (r = 0; r < 4; ++r) {

 for (c = 0; c < 4; ++c) {

 (*State)[c][r] = Sbox[(*State)[c][r]];

 }

 }

}

Figure 29

Each State byte is mapped to a new value by: (NIST 2001) Ab b′ = 1− ⊕ c

This transformation has been previously defined as an AES S-Box transformation of the
complete State matrix. As the range of the S-Box is 256, its small size allows specification
implementers many options. (Daemen & Rijmen 2002) Commonly, rather than performing the complex
operations which produce S-Box values, for each value we can precompute the resultant for
storage in an array. (NIST 2001) The AES calls this array a lookup table. (NIST 2001) The S-Box then
becomes a square two dimensional lookup table of size 16, containing a permutation of the byte
values in GF(28). (NIST 2001) SubBytes() uses the individual contents of a State element as an index
into the S-Box substitution table. (NIST 2001) During this transformation the value of each State byte
is split into the upper and lower four bits. (NIST 2001) These two new values serve as the S-Box
indices. (NIST 2001) The upper four bits determine the S-Box row location and the lower four bits
determine the S-Box column location. (NIST 2001) S-Box indices are represented in hex as values of
the range . (NIST 2001) Supposing a State byte s 0, 0 had value , seperate each 0) (− f 11011001} {
index (d, 9) and map to the unique S-Box value or , illustrated by Figure 30. 35} { 00110101} {

116

Figure 30

InvSubBytes() is the inverse of SubBytes(). (NIST 2001) This means we apply the inverse S-Box to
each byte of the State. (NIST 2001) Their mechanism is equivalent, the only difference is the lookup
table referenced, S-box by SubBytes() and InvS-box by InvSubBytes(). A full State
transformation using SubBytes() then InvSubBytes() is shown by Figure 31 below.

Figure 31

117

9.4 : ShiftRows

ShiftRows(State)
begin
 for r = 0 to 3
 for c = 0 to 3
 State[c] =
 State[r, (c + h(r,Nb)) mod Nb]
 end for
 end for
end

Figure 32

ShiftRows provides diffusion, performing a
transposition on the bytes of each State
row. (Daemen & Rijmen 2002) ShiftRows applies a left
cyclic shift to each byte in a given row, moving
it to the next "lowest" position, with the
exception of the byte in the "lowest" position
which is shifted out of the state array to "wrap"
and appear in the vacant "highest" position. (NIST

2001) The magnitude of each shift is a factor of
the row number r, and block length , bN
determined by the relationship:

 s′r,c = sr,(c+ shif t (r, Nb)) mod Nb

or 0 r 4 and 0 ≤ c Nb f < < <

As the AES specifies , coincidentally the bN = 4
shift offset is equal to the row number , r

. ≤ r 4 0 <

The mechanism of this operation is depicted
diagrammatically by Figure 34, below.

The four offsets have to be unique for optimal
diffusion. Since ShiftRows moves the bytes of
each column to four different columns, it is
diffusion optimal. "Diffusion optimality is
important in providing resistance against
differential and linear cryptanalysis." (Daemen & Rijmen

2002 p. 37)

static void ShiftRows(State* State)
{
 unsigned char temp;

 temp = (*State)[0][1];
 (*State)[0][1] = (*State)[1][1];
 (*State)[1][1] = (*State)[2][1];
 (*State)[2][1] = (*State)[3][1];
 (*State)[3][1] = temp;

 temp = (*State)[0][2];
 (*State)[0][2] = (*State)[2][2];
 (*State)[2][2] = temp;

 temp = (*State)[1][2];
 (*State)[1][2] = (*State)[3][2];
 (*State)[3][2] = temp;

 temp = (*State)[0][3];
 (*State)[0][3] = (*State)[3][3];
 (*State)[3][3] = (*State)[2][3];
 (*State)[2][3] = (*State)[1][3];
 (*State)[1][3] = temp;
}

Figure 33

118

Figure 34

InvShiftRows() is the inverse of the ShiftRows() transformation. (NIST 2001) As before, the first row,
, is not shifted while the bytes in the last three State rows, , are cyclically shifted r = 0 1, , r = 2 3

in the manner described before. (NIST 2001) The bottom three rows are shifted by b shif t(r, Nb) N −
bytes, where the shift value depends on the row number. This is shown by Figure 35 hif t(r, b) s N
below, and is given by equation: (NIST 2001)

 for and , s′r,(c+ shif t (r, Nb)) mod Nb = sr,c 0 < r < 4 ≤ c b 0 < N

Figure 35

119

9.5 : MixColumns

MixColumns(State)

begin

 byte t[4]

 for c = 0 to 3

 for r = 0 to 3

 t[r] = state[r,c]

 end for

 for r = 0 to 3

 state[r,c] =

 GM(0x02, t[r]) xor

 GM(0x03, t[(r + 1) mod 4]) xor

 t[(r + 2) mod 4] xor

 t[(r + 3) mod 4]

 end for

 end for

end

Figure 36

xt(a) ((a&0x80) ? ((a<<1)^0x1b) : (a<<1))

static void MixColumns(State* State) {

unsigned char t0, t1, t2, t3, t, r;

for (r = 0; r < 4; ++r) {

 t0 = State[0] ̂ State[1];

 t1 = State[1] ̂ State[2];

 t2 = State[2] ̂ State[3];

 t3 = State[3] ̂ State[0];

 t = t0 ̂ t2;

 State[0] ̂ = xt(t0) ̂ t;

 State[1] ̂ = xt(t1) ̂ t;

 State[2] ̂ = xt(t2) ̂ t;

 State[3] ̂ = xt(t3) ̂ t;

}

}

Figure 37

The transformation sequentially processes each of the four State columns ixColumns() M
denoted . (NIST 2001) operates on each of the four 4-byte word c , , c , c } { 0 c1 2 3 ixColumns() M
columns which encompass all sixteen AES state values. (NIST 2001) Due to the mechanism of this
transformation, each byte in the input affects all four bytes of the output, such that

 provides diffusion. (Daemen & Rijmen 2002) ixColumns() M

The transformation applies Modular Multiplication in Rijndael's Galois field. (NIST ixColumns() M

2001) This mechanism is described in full by Section 7.9. Each column is a word, represented via

120

four-term polynomial with coefficients over GF(2 8). Under the AES, polynomials over GF(2 8) are
multiplied by a fixed polynomial modulo . (NIST 2001) (x) 3x a = 3 + x2 + x + 2 x4 + 1

Figure 38, below, shows how this can be written as the matrix multiplication : (x) a(x) (x) s′ = ⊗ s

Figure 38

An equivalent system of equations achieves the result of this multiplication shown by Figure 39,
below, the four bytes in a column are solved for by the following: (NIST 2001)

Figure 39

All AES operations are done in the Galois field GF(2 8). Addition is an exclusive or (XOR)
operation as explained in Section 7.7 which we will use the symbol ⊕ to represent.
Multiplication is a complex operation as defined in Section 7.8 which we will use the symbol ⦁ to
represent. For the sake of explanation we temporarily use GM() as an abstraction for a GF(2 8)
multiplication function. GM() takes two GF(2 8) field members and returns their product under
AES GF(2 8) multiplication. Thus, GM() usage below implements the GF(2 8) multiplication
defined in Section 7.8. Furthermore, c defines a column position counter, {0,1,2,3}. s defines a
four byte array representing the state column before the AES MixColumns transformation. with
byte values represented by s[c] = {s[0],s[1],s[2],s[3]}. s' defines a four byte array representing
the state column after the AES MixColumns transformation. with byte values represented by
s'[c] = {s'[0],s'[1],s'[2],s'[3]}.

121

The state array can be arranged in
memory such that each state column is a
four byte, 32-bit word, c[3] to c[0]. The
mixColumns transformation is then: (Gladman

2003 p. 16)

By our notation:

Simplify by : M (s[n],) s[n] G 1 =

Multiplication by 1 is multiplication by the
identity element which leave a member
unchanged.

Simplify by
: M (s[n],) GM (s[n],) ⊕ s[n] G 3 = 2

Multiplication by 3 is equivalent to
Multiplication by 2 and an XOR,

Simplify by
: M (x,)⊕GM (y,) M (x⊕y,) G 2 2 = G 2

Due to the associative and distributive
properties, we perform the XOR of GM
parameters first, to reduced GM calls by
half.

c[3]′ = {02} • c[3] ⊕ {03} • c[0] ⊕ c[1] ⊕ c[2]

c[2]′ = {02} • c[2] ⊕ {03} • c[3] ⊕ c[0] ⊕ c[1]

c[1]′ = {02} • c[1] ⊕ {03} • c[2] ⊕ c[3] ⊕ c[0]

c[0]′ = {02} • c[0] ⊕ {03} • c[1] ⊕ c[2] ⊕ c[3]

s'[0]=GM(s[0],2)⊕GM(s[3],1)⊕GM(s[2],1)⊕GM(s[1],3);

s'[1]=GM(s[1],2)⊕GM(s[0],1)⊕GM(s[3],1)⊕GM(s[2],3);

s'[2]=GM(s[2],2)⊕GM(s[1],1)⊕GM(s[0],1)⊕GM(s[3],3);

s'[3]=GM(s[3],2)⊕GM(s[2],1)⊕GM(s[1],1)⊕GM(s[0],3);

s'[0] = GM(s[0],2) ⊕ s[3] ⊕ s[2] ⊕ GM(s[1],3);

s'[1] = GM(s[1],2) ⊕ s[0] ⊕ s[3] ⊕ GM(s[2],3);

s'[2] = GM(s[2],2) ⊕ s[1] ⊕ s[0] ⊕ GM(s[3],3);

s'[3] = GM(s[3],2) ⊕ s[2] ⊕ s[1] ⊕ GM(s[0],3);

s'[0] = GM(s[0],2) ⊕ s[3] ⊕ s[2] ⊕ GM(s[1],2)⊕s[1];

s'[1] = GM(s[1],2) ⊕ s[0] ⊕ s[3] ⊕ GM(s[2],2)⊕s[2];

s'[2] = GM(s[2],2) ⊕ s[1] ⊕ s[0] ⊕ GM(s[3],2)⊕s[3];

s'[3] = GM(s[3],2) ⊕ s[2] ⊕ s[1] ⊕ GM(s[0],2)⊕s[0]

s'[0] = GM(s[0]⊕ s[1],2) ⊕ s[3] ⊕ s[2] ⊕ s[1];

s'[1] = GM(s[1]⊕ s[2],2) ⊕ s[0] ⊕ s[3] ⊕ s[2];

s'[2] = GM(s[2]⊕ s[3],2) ⊕ s[1] ⊕ s[0] ⊕ s[3];

s'[3] = GM(s[3]⊕ s[0],2) ⊕ s[2] ⊕ s[1] ⊕ s[0];

Additionally, Multiplication by 2 in GF(2 8) is multiplication by x (binary {00000010} or hexadecimal
{02}). (NIST 2001) We now explain how multiplication by x is implemented as a left shift and a
subsequent conditional bitwise XOR with {1b}. (NIST 2001) Multiplying binary polynomials b(x) and x
produces: . (NIST 2001) The result x • b(x) in GF(2 8) is x x x x x x x xb7

8 + b6
7 + b5

6 + b4
5 + b3

4 + b2
3 + b1

2 + b0

122

then obtained by reducing the above result modulo m(x), see Section 7.8. (NIST 2001) To determine if
such reduction is necessary we perform the following conditional check. If b7 = 0, the result is
already in reduced form, If b7 = 1, we perform reduction by XOR of the polynomial m(x). (NIST 2001)

multiplication by x, implemented by left shift.

A bitmask is used to determine if b 7 =1

If so , we perform reduction by m(x)

Simplify by : M (s[n],) xt(s[n]) G 2 =

This is the AES operation xtime(), (NIST 2001)

for which we #define xt(x)

((a & 0X80) ? ((a << 1) ⊕ 0X1b) : (a << 1))

temporary values reduce load/arithmetic ops

t0 = s[0] ⊕ s[1]; t2 = s[2] ⊕ s[3];

t1 = s[1] ⊕ s[2]; t3 = s[3] ⊕ s[0];

t = t0 ⊕ t1;

[c] s[c] < 1; b = <

f (s[c] & 0X80) i

 [r] ⊕ 0X1b; b =

s'[0] = xt(s[0]⊕ s[1],2) ⊕ s[3] ⊕ s[2] ⊕ s[1];

s'[1] = xt(s[1]⊕ s[2],2) ⊕ s[0] ⊕ s[3] ⊕ s[2];

s'[2] = xt(s[2]⊕ s[3],2) ⊕ s[1] ⊕ s[0] ⊕ s[3];

s'[3] = xt(s[3]⊕ s[0],2) ⊕ s[2] ⊕ s[1] ⊕ s[0];

s'[0] = s[0] ⊕ xt(t0) ⊕ t;

s'[1] = s[1] ⊕ xt(t1) ⊕ t;

s'[2] = s[2] ⊕ xt(t2) ⊕ t;

s'[3] = s[3] ⊕ xt(t3) ⊕ t;

123

9.6 : InvMixColumns

InvMixColumns(State)

begin

 byte t[4]

 for c = 0 to 3

 for r = 0 to 3

 t[r] = state[r,c]

 end for

 for r = 0 to 3

 state[r,c] =

 GM(0x0E, t[r]) xor

 GM(0x0B, t[(r + 1) mod 4]) xor

 GM(0x0D, t[(r + 2) mod 4]) xor

 GM(0x09, t[(r + 3) mod 4]) xor

 end for

 end for

end

Figure 40

static void InvMixColumns(State* State) {

unsigned char r, t0, t1, t2, t3;

for (r = 0; r < 4; ++r) {

 t0 = State[0]; t1 = State[1];

 t2 = State[2]; t3 = State[3];

 State[0]=GM_E[t0]^GM_9[t3]^GM_D[t2]^GM_B[t1];

 State[1]=GM_E[t1]^GM_9[t0]^GM_D[t3]^GM_B[t2];

 State[2]=GM_E[t2]^GM_9[t1]^GM_D[t0]^GM_B[t3];

 State[3]=GM_E[t3]^GM_9[t2]^GM_D[t1]^GM_B[t0];

 }

}

Figure 41

The InvMixColumns() transformation sequentially processes each of the four State columns
denoted . InvMixColumns operates on each of the four, 4-byte word columns to c , , c , c } { 0 c1 2 3
encompass all sixteen AES state values. The InvMixColumns transformation applies Modular
Multiplication in Rijndael's Galois field. This mechanism is described in full by Section 7.9. Each
column is a word, represented via four-term polynomial with coefficients over GF(2 8). Under the
AES, polynomials over GF(2 8) are multiplied by fixed polynomial

modulo . (NIST 2001) (x) 0B}x 0D}x 09}x 0E} a 1− = { 3 + { 2 + { + { x4 + 1

Figure 42, below, shows how this can be written as the matrix multiplication (x) a(x) (x) s′ = ⊗ s
: (NIST 2001)

124

Figure 42

An equivalent system of equations achieves the result of this multiplication shown by Figure 43,
below, the four bytes in a column are solved for by the following: (NIST 2001)

Figure 43

Rather than perform Galois Field multiplication directly, AES implementations have previously
relied upon lookup tables to perform GF(2 8) multiplication. Necessary for the transformations of
the AES by this method are six identical tables each consisting of all values in GF(2 8), stored in
256 byte arrays. The members of these tables are then multiplied by a given constant in GF(2 8).
Multiplication by the constants 2 and 3, are required for encryption. Multiplication by the
constants 9, 11, 13, and 14 are required for decryption. This particular implementation shows
decryption by table. Required are the values shown below by Tables 25, 26, 27, 28, which
depicts multiplication of the constants 9, 11, 13, and 14, respectively. For example, to achieve
multiplication of the value n by 9 in GF(2 8) via a table array, the result r, is generally obtained:
yte result GM9[n]; b =

125

M_9[n] G y
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

x

00 00 09 12 1b 24 2d 36 3f 48 41 5a 53 6c 65 7e 77
10 90 99 82 8b b4 bd a6 af d8 d1 ca c3 fc f5 ee e7
20 3b 32 29 20 1f 16 0d 04 73 7a 61 68 57 5e 45 4c
30 ab a2 b9 b0 8f 86 9d 94 e3 ea f1 f8 c7 ce d5 dc
40 76 7f 64 6d 52 5b 40 49 3e 37 2c 25 1a 13 08 01
50 e6 ef f4 fd c2 cb d0 d9 ae a7 bc b5 8a 83 98 91
60 4d 44 5f 56 69 60 7b 72 05 0c 17 1e 21 28 33 3a
70 dd d4 cf c6 f9 f0 eb e2 95 9c 87 8e b1 b8 a3 aa
80 ec e5 fe f7 c8 c1 da d3 a4 ad b6 bf 80 89 92 9b
90 7c 75 6e 67 58 51 4a 43 34 3d 26 2f 10 19 02 0b
a0 d7 de c5 cc f3 fa e1 e8 9f 96 8d 84 bb b2 a9 a0
b0 47 4e 55 5c 63 6a 71 78 0f 06 1d 14 2b 22 39 30
c0 9a 93 88 81 be b7 ac a5 d2 db c0 c9 f6 ff e4 ed
d0 0a 03 18 11 2e 27 3c 35 42 4b 50 59 66 6f 74 7d
e0 a1 a8 b3 ba 85 8c 97 9e e9 e0 fb f2 cd c4 df d6
f0 31 38 23 2a 15 1c 07 0e 79 70 6b 62 5d 54 4f 46

Table 25

M_B[n] G y
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

x

00 00 0b 16 1d 2c 27 3a 31 58 53 4e 45 74 7f 62 69
10 b0 bb a6 ad 9c 97 8a 81 e8 e3 fe f5 c4 cf d2 d9
20 7b 70 6d 66 57 5c 41 4a 23 28 35 3e 0f 04 19 12
30 cb c0 dd d6 e7 ec f1 fa 93 98 85 8e bf b4 a9 a2
40 f6 fd e0 eb da d1 cc c7 ae a5 b8 b3 82 89 94 9f
50 46 4d 50 5b 6a 61 7c 77 1e 15 08 03 32 39 24 2f
60 8d 86 9b 90 a1 aa b7 bc d5 de c3 c8 f9 f2 ef e4
70 3d 36 2b 20 11 1a 07 0c 65 6e 73 78 49 42 5f 54
80 f7 fc e1 ea db d0 cd c6 af a4 b9 b2 83 88 95 9e
90 47 4c 51 5a 6b 60 7d 76 1f 14 09 02 33 38 25 2e
a0 8c 87 9a 91 a0 ab b6 bd d4 df c2 c9 f8 f3 ee e5
b0 3c 37 2a 21 10 1b 06 0d 64 6f 72 79 48 43 5e 55
c0 01 0a 17 1c 2d 26 3b 30 59 52 4f 44 75 7e 63 68
d0 b1 ba a7 ac 9d 96 8b 80 e9 e2 ff f4 c5 ce d3 d8
e0 7a 71 6c 67 56 5d 40 4b 22 29 34 3f 0e 05 18 13
f0 ca c1 dc d7 e6 ed f0 fb 92 99 84 8f be b5 a8 a3

Table 26

126

M_D[n] G y
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

x

00 00 0d 1a 17 34 39 2e 23 68 65 72 7f 5c 51 46 4b
10 d0 dd ca c7 e4 e9 fe f3 b8 b5 a2 af 8c 81 96 9b
20 bb b6 a1 ac 8f 82 95 98 d3 de c9 c4 e7 ea fd f0
30 6b 66 71 7c 5f 52 45 48 03 0e 19 14 37 3a 2d 20
40 6d 60 77 7a 59 54 43 4e 05 08 1f 12 31 3c 2b 26
50 bd b0 a7 aa 89 84 93 9e d5 d8 cf c2 e1 ec fb f6
60 d6 db cc c1 e2 ef f8 f5 be b3 a4 a9 8a 87 90 9d
70 06 0b 1c 11 32 3f 28 25 6e 63 74 79 5a 57 40 4d
80 da d7 c0 cd ee e3 f4 f9 b2 bf a8 a5 86 8b 9c 91
90 0a 07 10 1d 3e 33 24 29 62 6f 78 75 56 5b 4c 41
a0 61 6c 7b 76 55 58 4f 42 09 04 13 1e 3d 30 27 2a
b0 b1 bc ab a6 85 88 9f 92 d9 d4 c3 ce ed e0 f7 fa
c0 b7 ba ad a0 83 8e 99 94 df d2 c5 c8 eb e6 f1 fc
d0 67 6a 7d 70 53 5e 49 44 0f 02 15 18 3b 36 21 2c
e0 0c 01 16 1b 38 35 22 2f 64 69 7e 73 50 5d 4a 47
f0 dc d1 c6 cb e8 e5 f2 ff b4 b9 ae a3 80 8d 9a 97

Table 27

M_E[n] G y
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

x

00 00 0e 1c 12 38 36 24 2a 70 7e 6c 62 48 46 54 5a
10 e0 ee fc f2 d8 d6 c4 ca 90 9e 8c 82 a8 a6 b4 ba
20 db d5 c7 c9 e3 ed ff f1 ab a5 b7 b9 93 9d 8f 81
30 3b 35 27 29 03 0d 1f 11 4b 45 57 59 73 7d 6f 61
40 ad a3 b1 bf 95 9b 89 87 dd d3 c1 cf e5 eb f9 f7
50 4d 43 51 5f 75 7b 69 67 3d 33 21 2f 05 0b 19 17
60 76 78 6a 64 4e 40 52 5c 06 08 1a 14 3e 30 22 2c
70 96 98 8a 84 ae a0 b2 bc e6 e8 fa f4 de d0 c2 cc
80 41 4f 5d 53 79 77 65 6b 31 3f 2d 23 09 07 15 1b
90 a1 af bd b3 99 97 85 8b d1 df cd c3 e9 e7 f5 fb
a0 9a 94 86 88 a2 ac be b0 ea e4 f6 f8 d2 dc ce c0
b0 7a 74 66 68 42 4c 5e 50 0a 04 16 18 32 3c 2e 20
c0 ec e2 f0 fe d4 da c8 c6 9c 92 80 8e a4 aa b8 b6
d0 0c 02 10 1e 34 3a 28 26 7c 72 60 6e 44 4a 58 56
e0 37 39 2b 25 0f 01 13 1d 47 49 5b 55 7f 71 63 6d
f0 d7 d9 cb c5 ef e1 f3 fd a7 a9 bb b5 9f 91 83 8d

Table 28

127

9.7 : AddRoundKey

AddRoundKey(State, RoundKey)

begin

for i = 0 step 1 4*Nb

State i XOR RoundKey i
end for

end

Figure 44

static void AddRoundKey(unsigned char round,
State* State,unsigned char* RoundKey) {

unsigned char r, c;

 for (r = 0; r < 4; ++r) {

 for (c = 0; c < 4; ++c) {

 (*State)[r][c] ̂ =

 RoundKey[(round*Nb*4) + (r*Nb) + c];

 }

 }

}

Figure 45

The AddRoundKey function performs a bitwise exclusive or between the State and a Round
Key. (NIST 2001) Each Round Key is a portion of the key schedule, generated by the KeyExpansion()
function, a 4-byte word vector. (NIST 2001) A Round Key consists of words, where is the bN bN
number of words in a cipher block, by the specification of the AES. Round Key addition bN = 4
occurs prior to the first round, and continues when 1 ≤ round ≤ Nr. (NIST 2001) Each word of the
Round Key is XOR'ed into the columns of the State:

 s , , , } w { s , , s , s } for 0 ≤ c b and 0 ≤ round ≤ Nr{
0, c s

1, c s

2, c s

3, c ⊕ round Nb+c*

= ′
0, c s′1, c ′2, c ′3, c < N

Where represents a State byte, represents a given key schedule word and is a sr, c wi s′r, c
transformed byte. The mechanism of this operation is depicted diagrammatically by Figure 46,
below. AddRoundKey(), described above, is equivalent to the XOR operation and is thus its own
inverse. (NIST 2001)

128

Figure 46

129

9.8 : InvCipher

Transformations of the AES Cipher() are decrypted through round and function inversion by
InvCipher(). The same number of round iterations are used. (NIST 2001)

InvCipher(State,RoundKey)

begin

 AddRoundKey(State, RoundKey)

 for i = 1 to Nr

 InvRound(State, RoundKey+Nb*i);

 InvFinalRound(State, RoundKey+Nb*Nr);

 end for

InvRound(State,RoundKey)

begin

 InvShiftRows(State);

 InvSubBytes(State);

 AddRoundKey(round, State, RoundKey);

 InvMixColumns(State);

end

InvFinalRound(State, RoundKey)

begin

 InvShiftRows(State);

 InvSubBytes(State);

 AddRoundKey(round, State, RoundKey);

end

Figure 47

void InvCipher(State* State, unsigned char*
RoundKey)

{

unsigned char round = 0;

AddRoundKey(Nr, State, RoundKey);

for (round = (Nr - 1); round > 0; round--) {

 InvShiftRows(State);

 InvSubBytes(State);

 AddRoundKey(round, State, RoundKey);

 InvMixColumns(State);

 }

InvShiftRows(State);

InvSubBytes(State);

AddRoundKey(0, State, RoundKey);

}

Figure 48

130

The AES InvCipher() implements a round function of four byte-oriented transformations: (NIST 2001)

InvSubBytes() individual byte substitution using the InvS-Box lookup table

InvShiftRows() shifts each State array rows by a unique offset

InvMixColumns() mixes each State array column

AddRoundKey() adds the randomized Round Key to the State

An initial AddRoundKey precedes the iteration of Nr-1 rounds, while the final round does not
include the InvMixColumns() transformation. These functions operate on arrays provided by the
State and RoundKey pointers. RoundKey is the key schedule generated by the KeyExpansion()
function, a vector consisting of 4-byte words. RoundKey words are used each round bN
iteration. The State transformations referenced above are defined in the same sections as their
inverses except for InvMixColumns which is Section 9.6.

131

Section 10 : Block Cipher Modes of Operation

10.1 : Probabilistic Encryption

Individually a block cipher serves to provide message confidentiality, protection from
unauthorized access. (Paar & Pelzi 2009) Unauthorized access in this case equates to adversaries
without the block ciphers secret key. (Paar & Pelzi 2009) However, a block cipher is only defined for a
single block size transformation per key. In practice, the size of a message is larger than the
block size, often much larger. Secure use of a block cipher would entail impractical key
generation and management efforts. It is because of this that block ciphers are classified as
cryptographic primitives, to be used as a component in a secure cryptosystem. (Van Tilborg & Jajodia, 2011)

Standardised block cipher modes of operation were developed to extend block cipher capability.
While their applications are many, the few focused by this document are procedures that allow a
generic block cipher to transform data allocations larger than a single block and achieve
probabilistic results under a fixed key. (Van Tilborg & Jajodia, 2011) Of primary concern when encrypting
with a constant key, is the tendency for equal plaintext blocks to share some non-random
correspondence. (Van Tilborg & Jajodia, 2011) To be semantically secure, protecting all plaintext
information, an encryption algorithm's execution must be probabilistic. (Housley 2004) While we
discussed deterministic execution in Section 2.2, a probabilistic encryption method is defined as
a process that introduces randomness to every instantiation. In the case of block cipher
algorithms, probabilistic encryption ensures that identical plaintexts under a constant key result
in unique ciphertexts, masking data patterns. An example of these patterns is illustrated. (Housley

2004)

To achieve probabilistic encryption we must provide randomness for each block cipher
instantiation. As input, along with the message and key, most modes require an initialization
vector (IV) . (Housley 2004) An IV is a block-sized bit vector, comprising a unique binary sequence,
used to randomize encryption under a constant key. (Kuo-Tsang Huang Chiu Shen 2013) When implemented in
an established mode of operation, IVs eliminate the need for a slower re-keying process. (Kuo-Tsang

Huang Chiu Shen 2013) As they serve a different purpose, Initialization vectors have different security
requirements than keys. Most apparent is the fact that IVs do not need to be secret. (Kuo-Tsang Huang

Chiu Shen 2013) Of greatest importance is that IV's must not be used reused with the same key, and,
for some modes, IV generation must be unpredictable. (Kuo-Tsang Huang Chiu Shen 2013)

Additionally, some modes increase block cipher capability to provide properties which
complement the security of the underlying block cipher. A common requirement are forms of
encryption which assure message confidentiality and authenticity. (Dworkin 2001) Message

132

authenticity i s a property held by messages for which a receiver can verify unmodified
transmission from a known origin. (Dworkin 2001) Many modes of operation have been defined, as
such their security qualities and use cases vary. NIST has defined five modes of operation for
AES and other FIPS-approved block ciphers. Each of these modes has different
characteristics. The five modes are: ECB (Electronic Code Book), CBC (Cipher Block
Chaining), CFB (Cipher FeedBack), OFB (Output FeedBack), and CTR (Counter). (Housley 2004)
Care must be taken during implementation and application to maintain security or complete
compromise is risked. (Dworkin 2001) This document uses ECB, CBC, and CTR to serve as examples
of operation mode variety,

133

10.2 : Padding

Block cipher primitives are defined to operate on fixed size plaintext blocks. (Dworkin 2001) While
block ciphers may be capable of operating on blocks of varied size, block size is a constant
during individual execution instances. (Dworkin 2001) Plaintext that is not a multiple of the current
block size must be padded. (Menezes Van Oorshot & Vanstone 1997) Padding is the addition of plaintext material
such that message size is a multiple of the cipher block size, (Menezes Van Oorshot & Vanstone 1997) many
methods exist. (Ferguson Schneier 2003) Two of the examples outlined by this document, ECB and CBC,
require that final blocks be padded before encryption. (Dworkin 2001) We will explore a few padding
methods of trivial complexity below.

The simplest padding methods append bytes to the length of the plaintext , such that their a p
total is , the cipher block size . These bytes have designated values such that b bp + a = x a
their removal is procedural. Zero padding appends {00} byte values: a

Padding an 8 byte block: ... | PP PP PP PP PP PP PP PP | PP PP PP PP 00 00 00 00 |

Zero padding is unusable on plaintexts ending in one or more zero byte values. The boundary
between the plaintext and the pad string is ambiguous as "trailing 0-bits of the original data
cannot be distinguished from those added during padding." (Menezes Van Oorshot & Vanstone 1997 p. 335) The
{00} value in Zero padding can be replaced with any byte value. This method is acceptable, and
efficient, if recipients are able to know the message length. (Menezes Van Oorshot & Vanstone 1997)

The method is similar in concept, but solves the boundary issue. A predefined byte value is
appended to mark the plaintext boundary, then the remaining bytes are zero padded. a) (− 1
ISO/IEC 7816-4:2005 defines this method to be used for 8 byte smart cards when the boundary
byte is 0X80.

Padding an 8 byte block: ... | PP PP PP PP PP PP PP PP | PP PP PP PP 80 00 00 00 |

If the message length is a multiple of the cipher block size, an entire padding block with be
appended to ensure the plaintext boundary can be determined. (Menezes Van Oorshot & Vanstone 1997) This is
due to cases where the plaintext to be padded is the block size and the final plaintext byte is
equal to the value of the boundary value. (Menezes Van Oorshot & Vanstone 1997) Without appending an entire
block, the final byte is just as likely to be a padding boundary byte as it is to be valid

134

plaintext. (Menezes Van Oorshot & Vanstone 1997) Bytes to be stripped from a decrypted plaintext are the
boundary value and any {00} bytes that follow.

Our final example has been standardized for cryptographically protected messages. This
padding method is described in RFC 5652 , Cryptographic Message Syntax (CMS), Section 6.3.
CMS has been thoroughly reviewed and is approved for used to digitally sign, digest,
authenticate, or encrypt arbitrary message content. (Housley 2009) The padding string consists of a
bytes of value , where 0 ≤ < 256, This method is only well defined for values that can be a a
expressed by a byte. (Housley 2009)

Padding an 8 byte block: ... | PP PP PP PP PP PP PP PP | PP PP PP PP 04 04 04 04 |

As with the previous method, if the message is a multiple of the block size, an entire plaintext
block will be appended to provide a defined plaintext boundary. The number of bytes to be
stripped from decrypted plaintext is equal to the value of the final byte. (Housley 2009)

Modes that require padding can compromise the security benefits provided by the underlying
block cipher. The addition of a padding transformation introduces the possibility of attacks where
by adversaries use information leaked about the padding process to compromise the underlying
block cipher. (Fedler 2013) The description of such a process is outside the scope of this document.
Contemporary padding procedures do not require padding as ciphertext is made equal to the
message in size with negligible complexity increase. Methods like ciphertext stealing, which
provides an alternative specification to the popular CBC mode which are not detailed by this
document. (Kuo-Tsang Huang Chiu Shen 2013)

A security measure within the scope of this document details the use of a "streaming" mode
where by the plaintext length does not need to be a multiple of the blocksize, the example
outlined by this document is CTR. (Dworkin 2001) Streaming block cipher modes, like stream ciphers
themselves, do not require padding. (Dworkin 2001) Such modes use the block cipher to generate a
stream of pseudo random data to be xored with the plaintext. (Dworkin 2001) Similar to the One Time
Pad, the random data required is equal to the size of the message, rather than a multiple of the
block size. Because of this, streaming modes are used in applications where it is inefficient to
add padding.

135

https://tools.ietf.org/html/rfc5652
https://tools.ietf.org/html/rfc5652

10.3 : Electronic Codebook (ECB)

ECB is the most simplistic standardized encryption mode. (Van Tilborg & Jajodia, 2011) A message of size
 is divided into a number of size plaintext blocks, where is the cipher block size. Each m n n

plaintext block , is encrypted with a constant key , to produce ciphertext block . (Paar & Pelzi 2009) pi k ci
ECB mode is its own inverse. (Dworkin 2001)

Execution

● , k) E(p0 = c0 A plaintext block , is encrypted with the key , to produce ciphertext p0 k
block c0

● , k) E(pi = ci Subsequent blocks , are encrypted with key to produce ciphertext pi k
blocks ci

Where is the block index , and is the number of size plaintext blocks such that i ≤ i 0 < q q n
. (Paar & Pelzi 2009) As there is no interaction between cipher execution on individual blocks, nq = m

thus, there is no dependence between the transformation of a given message block and any
subsequent operations. (Housley 2004) Due to this lack of dependence, ECB is possible to implement
in parallel and transcription errors affect only the containing block. (Paar & Pelzi 2009) We will see that
block cipher modes with dependence between block transformations are impossible to
implement in parallel and tend to cascade transcription errors such that a fault in one bit may
invalidate all subsequent transformations. (Paar & Pelzi 2009)

Given a particular input, a deterministic procedure will always execute the same sequence of
states, producing identical output. (Van Tilborg & Jajodia, 2011) By ECB, if two equal plaintext blocks are
encrypted under the same key, the corresponding cipher operations and ciphertext blocks will
be identical, thusly ECB mode is deterministic. (Housley 2004) The mode's name originates from the
fact that, for a given key, a codebook could be created, mapping all possible of ciphertexts for
all possible plaintext blocks. (Dworkin 2001) This reduces block transformations to a table lookup, ",
analogous to the assignment of code words in a codebook" (Dworkin 2001 p. 9) , the type used for
decades by the financial industry. (Paar & Pelzi 2009)

In general, deterministic ciphers are considered insecure, ECB mode should not be used
without thorough consideration. (Housley 2004) This insecurity is due to a lack of diffusion, data
patterns of the underlying message can be seen in ECB mode output, resulting from identical
plaintext blocks corresponding to identical ciphertext blocks. (Housley 2004) A common example is
the use of ECB to encrypt an uncompressed bitmap image, (Kuo-Tsang Huang Chiu Shen 2013) as seen in

136

the left most image of Figure 49 below. Bitmap pixels are represented by a defined byte pattern,
areas with equal pixel values result in equal pixel values upon ECB encryption as represented
in the middle image of Figure 50 below. (Kuo-Tsang Huang Chiu Shen 2013) In this sense ECB does not
achieve basic message confidentiality. (Kuo-Tsang Huang Chiu Shen 2013) When a probabilistic encryption
mode is used, encryption of the equal pixel values result in distinct pixel values after encryption
as seen in the right most image of Figure 51 below. (Kuo-Tsang Huang Chiu Shen 2013)

Figure 49 Figure 50 Figure 51

In practice, ECB mode, and deterministic use of a block cipher in general, can introduce the
possibility of replay attacks, when proof of identity is in the form of an encrypted value. An
eavesdropper may simply replay the encrypted value rather than decode any plaintext. (Kuo-Tsang

Huang Chiu Shen 2013)

137

10.4 : Cipher Block Chaining Mode (CBC)

CBC uses block chaining to provide probabilistic encryption when the key and message are
constant. (Dworkin 2001) In this way, the randomness supplied to the encryption function by the IV is
chained throughout the execution. (Dworkin 2001) CBC mode achieves this by requiring a unique,
random IV to be XORed with the first plaintext before cipher operations. (Paar & Pelzi 2009)

. IV , k) E(p0 ⊕ = c0

A produced ciphertext is XORed with the subsequent plaintext before input to the cipher
operation. (Paar & Pelzi 2009)

. , k) E(pi⊕ ci 1− = ci

Execution

● XOR the IV with the first plaintext block p0

● Encrypt this value with key , to produce ciphertext block IV p0 ⊕ k c0

● XOR ciphertext block , with the subsequent plaintext block c0 p1

● Encrypt this value with key , to produce ciphertext block p1 ⊕ c0 k c1

● XOR a subsequent plaintext block , with the most recent ciphertext block pi ci 1−

● Encrypt their value with key to produce remaining ciphertext blocks pi⊕ ci 1− k ci

As decryption is the inverse operation, the current ciphertext block is decrypted then the ci
necessary value is XORed to produce plaintext block . (Paar & Pelzi 2009) pi

, k) D(ci ⊕ ci 1− = pi

For the initial block , the IV is used as the ciphertext block , to produce plaintext . (Paar & c0 ci 1− p0

Pelzi 2009)

, k) V D(c0 ⊕ I = p0

Cipher Block Chaining (CBC) mode of operation was patented in 1976 by Ehrsam, Meyer, Smith
and Tuchman, US Patent 4074066. The IV is a valuable improvement, as even a single bit
change causes operation of a general block cipher to be non-deterministic. To make ciphertext,
produced with constant plaintext and key, non-deterministic, a unique, random IV must be
provided for each execution. (Housley 2004) Under CBC mode, each block of plaintext is XORed with

138

the previously generated ciphertext block before it is given as input to the cipher. Because the
cipher's operation on one block is influenced by its operation on another block, CBC mode is
said to display chaining dependency. (Paar & Pelzi 2009)

CBC plaintext encryption is dependant on all previously processed plaintext blocks, as
such: (Housley 2004)

● Encryption must be performed serially as each operation provides a necessary unknown
input.

● Any transmission error will be propagated throughout, and corrupt following operations.

CBC ciphertext decryption is dependant on the value of the previous ciphertext block, as
such: (Housley 2004)

● Decryption is parallelizable as each operation relies on known input values

● Use of an incorrect IV corruptions the first plaintext block but all others are unaffected

● Any transmission error will corrupt only the containing blocks decryption

139

10.5 : Counter Mode (CTR)

Counter mode uses a block cipher to generate a unique keystream composed of size k n c
blocks, where is the cipher block size, such that . (Dworkin 2001) This mode implements c nc = m
encryption to transform a set of input "counters" into a keystream that is then XORed with
plaintext units of equal location, resulting in the ciphertext unit at that location. (Dworkin 2001) To
ensure probabilistic encryption, CTR often takes a random IV to be combined with the
counter. (Ferdinand 2017)

Execution

● (v , k) s E 0 = 0 Encrypt counter value , under key , to produce keystream block v0 k s0

● p0 ⊕ s0 = c0 XOR plaintext block and keystream block , producing cipherblock p0 s0 c0

● v0 → v1 Update the counter value v1

● (v , k) s E i = i Encrypt subsequent values , by key , to produce keystream block vi k si

● pi⊕ si = ci XOR plaintext block and keystream block , producing cipherblock pi si ci

Where is the block index , and is the number of size plaintext blocks such that i ≤ i 0 < q q n
. (Paar & Pelzi 2009) nq = m

Counter (CTR) mode of operation was developed by Whitfield Diffie and Martin Hellman and
introduced by the IEEE in 1979. (Diffie Hellman 1979) To generate the pseudo random keystream, the
mode uses successive counter values in place of a random IV. (Housley 2004) The counter function
used for CTR may be derived a number of ways. Any function is valid so long as it produces a
sequence of sufficient length such that a given key is never used with the same counter
values. (Housley 2004) Common is a simple increment by one counter XORed with a unique IV. (Housley

2004) Use of a deterministic input function is only a valid concern if the underlying cipher is weak,
it is not the responsibility of a mode of operation to try to compensate. (Lipmaa Rogaway Wagner 2000)

Two cases exist with a deterministic input function, like increment by one, to resist
chosen-plaintext attacks by which an adversary controls the IV–counter pair to cause a
collision. (Ferdinand 2017) A random IV may be combined with each sequence value by an invertible
operation to produce the counter value, this maintains properties of randomness. (Ferdinand 2017) A
non-random IV may be used if concatenated with the sequence value by placing the former in
the first half and the latter in the second. (Ferdinand 2017) A 128 bit example concatenates a 64-bit
sequence value to a 64-bit IV to produce each 128-bit counter block. (Ferdinand 2017) While many

140

other methods exist, it is ultimately the user’s responsibility to ensure that it is impossible, or
highly improbable, that a counter value is ever reused with the same key. (Lipmaa Rogaway Wagner 2000)

One interesting benefit is that CTR encryption is its own inverse operation. (Paar & Pelzi 2009) The
decryption process produces an identical decryption key-stream to be utilized in the same way
as encryption. (Paar & Pelzi 2009) CTR does not display the chaining dependency of CBC, allowing
non-sequential transformation or "random access" for both encryption and decryption. (Housley 2004)
This is because each block uses the same key, IV, and initial counter value such that the nth
block may be processed by taking the nth offset of the initial counter value. As there is no
dependency between cipher instances, each transformation may be executed in parallel. (Housley

2004) CTR mode does not propagate error of transmission, error in a single bit will affect only that
bit after transformation. (Housley 2004) However, if the counter offset becomes invalid, so to will the
key stream and resulting cipher transformations. (Housley 2004)

141

Conclusions

I have learned a great deal about the subjects that I intended. Having performed research to
identify the properties associated with a cryptographically secure block cipher implementation,
progress would entail work toward a complete understanding of the supporting mathematical
theory and their broader implications. Ultimately, a further analysis to achieve a functional
knowledge of each of the cryptographic primitives presented by the taxonomy in Figure 5 would
be ideal.

The scope of this report changed over the course of its execution, becoming increasingly vast.
As I was unable to manage the work that I had set for myself, at the suggestion of my Senior
Project advisor, I placed work that I could not fully integrate into a future work folder for pursuit
after this project.

Delayed work:

Classical Ciphers

Transposition Ciphers

Substitution Ciphers

Classical Modular Ciphers: Ceaser and Affine Ciphers

Polygraphic Substitution: MixColumns and Hill Ciphers

15 Page Timeline of Communication and Cryptographic Application

Cryptologic History

- Advent of Cryptology

- Advent of Cryptanalysis and Frequency Analysis

- Pre Modern

WWI: UK Room 40, US Black Chamber

WWII: Enigma Machine, PURPLE, UK Bletchley Park, US Sig Int, Polish Cipher Bureau

- The DES Selection Process (Submission Overviews, Design Criteria, Evaluation)

142

- Public Key Cryptography

- Diffie–Hellman Key Exchange

- Pseudorandom bit generation

- Digital Signatures

- The RSA Cryptosystem

- Message authentication codes

- Cryptographic Hash Functions

- Identification and Entity Authentication

- The AES Selection Process (Submission Overviews, Design Criteria, Evaluation)

- Elliptic-curve Diffie–Hellman key exchange

- Post-quantum cryptography

Public Key Mathematics

- Modular Exponentiation

- Extended Euclidean Algorithm

- Discrete Logarithm Problem

- Elliptic Curve Cryptography

Asymmetric Key Establishment

- Public Key Infrastructure

Efficient GPU Implementation

- Concurrency

- Data Locality

- T-Tables

- BitSlicing

143

Work Ci ted

(Greenlaw & Hoover 1998)

Greenlaw, Raymond and Hoover, H.James. 1998 . Fundamentals of the Theory of
Computation: Principles and Practice. Massachusetts: Morgan Kaufman.

(Shannon 1948)
Shannon, C.E. 1948. “A Mathematical Theory of Communication”. Reprinted with
corrections from The Bell System Technical Journal, Vol. 27, (July, October). 379–423,
623–656.
http://www.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf

(Rowlett 2018)
Rowlett, Russ. 2018. “How Many? A Dictionary of Units of Measurements.” University of
North Carolina at Chapel Hill. http://www.ibiblio.org/units/ [shannon /dictS.html#shannon]
[bit /dictB.html#bit]

(Buchholz 2000)

Buchholz, Werner.. “IEEE Annals of the History of Computing: Comments, Queries and
Debates”. April–June 2000, 69-71.
https://web.archive.org/web/20030605004419/http://computer.org/annals/an2000/pdf/a2
069.pdf

(Kuphaldt 2001)
Kuphaldt, Tony R. 2001. “All About Circuits: Lessons in Electric Circuits”. EETechMedia.
https://www.allaboutcircuits.com/textbook/

1) direct-current/chpt-9/analog-and-digital-signals/ par. 2
2) digital/chpt-1/decimal-versus-binary-numeration/ par. 4
3) digital/chpt-14/introduction-to-digital-communication/

(AAKCT 2018)

Anagnostopoulos, Nikolaos Athansios, Stefan Katzenbeisser, Stephen, Chandy, John
and Tehranipoor, Fatemeh. 2018. “An Overview of DRAM-Based Security Primitives”.
Cryptography. https://www.mdpi.com/2410-387X/2/2/7/pdf

(BDA 2010)
Blu-ray Disc Association, 2010. "White Paper Blu-ray Disc™ Format 1.C Physical
Format Specifications for BD-ROM .
http://www.blu-raydisc.com/Assets/Downloadablefile/BD-ROMwhitepaper20070308-152
70.pdf

(Woodland & Bernard 1949)
Woodland, Norman and Bernard, Silver. 1949. (US2612994). “Classifying Apparatus and
Method”. US Patent Office. https://patents.google.com/patent/US2612994

144

http://www.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
http://www.ibiblio.org/units/
http://www.ibiblio.org/units/dictS.html#shannon
http://www.ibiblio.org/units/dictB.html#bit
https://web.archive.org/web/20030605004419/http://computer.org/annals/an2000/pdf/a2069.pdf
https://web.archive.org/web/20030605004419/http://computer.org/annals/an2000/pdf/a2069.pdf
https://www.allaboutcircuits.com/textbook/
https://www.allaboutcircuits.com/textbook/direct-current/chpt-9/analog-and-digital-signals/
https://www.allaboutcircuits.com/textbook/digital/chpt-1/decimal-versus-binary-numeration/
https://www.allaboutcircuits.com/textbook/digital/chpt-14/introduction-to-digital-communication/
https://www.mdpi.com/2410-387X/2/2/7/pdf
http://www.blu-raydisc.com/Assets/Downloadablefile/BD-ROMwhitepaper20070308-15270.pdf
http://www.blu-raydisc.com/Assets/Downloadablefile/BD-ROMwhitepaper20070308-15270.pdf
https://patents.google.com/patent/US2612994

(Apt 2019)
Apt, Adam Jared. 2019. “Thomas Harriet: English Mathematician and Astronomer”.
Encyclopaedia of Britannica. https://www.britannica.com/biography/Thomas-Harriot

(O’Connor & Robertson 2019)
O’Connor, John J. and Robertson, Edmund. 2019. “Harriot and Binary Numbers”.
University of St. Andrews Scotland.
https://www-history.mcs.st-and.ac.uk/Extras/Harriot_binary_numbers.html

(Shirly 1951)
Shirley, John W. 1951. “ Binary Numeration Before Leibniz”, American Journal of Physics,
vol. 19, issue 8, 452–454. https://doi.org/10.1119/1.1933042

(Ochulor 2011)
Ochulor, Chinenye Leo. 2011. “Francis Bacon’s Qualification as a Principal Empiricist
Philosopher”, Canadian Social Sciences, Vol. 7, No. 5, 229-235.
DOI:10.3968/J.css.1923669720110705.270

(Gallup 2010)
Gallup, Elizabeth. 2010. The Biliteral Cypher of Francis Bacon , Montana: Kessinger
Publishing.

(O’Connor & Robertson 2010)
O’Connor, John J. and Robertson, Edmund. 2010. “Juan Caramuel Y Lobkowitz”.
University of St. Andrews Scotland.
https://www-history.mcs.st-andrews.ac.uk/Biographies/Caramuel.html

(Smith 2008)
Smith, Justin. 2008. Leibniz: What Kind of Rationalist. Heidelberg, Germany. Springer
Science + Business Media.

(Wilhelm & Baynes 1967)
Wilhelm, Richard and Baynes, Cary. 1967. The I Ching or Book of Changes. New York:
Bollingen Foundation Inc.

(ALLM 2018)
Ares, J., Lara, J. Lizcano, D. and Martinez, M.A. 2018. “Who Discovered the Binary
System in Arithmetic? Did Leibniz Plagerize Caramuel?” Maryland: National Center of
Biotechnical Information. U.S. National Library of Medicine.
https://www.ncbi.nlm.nih.gov/pubmed/28281152

(Lande 2014)
Lande, Daniel. 2014. “Development of the Binary Number System and the Foundation of
Computer Science”. The Mathematics Enthusiast. Vol. 11, No. 3. Article 6 12-2014.
https://scholarworks.umt.edu/cgi/viewcontent.cgi?article=1315&context=tme .

145

https://www.britannica.com/biography/Thomas-Harriot
https://www-history.mcs.st-and.ac.uk/Extras/Harriot_binary_numbers.html
http://aapt.scitation.org/doi/abs/10.1119/1.1933042?journalCode=ajp
https://doi.org/10.1119/1.1933042
https://www-history.mcs.st-andrews.ac.uk/Biographies/Caramuel.html
https://www.ncbi.nlm.nih.gov/pubmed/28281152
https://scholarworks.umt.edu/cgi/viewcontent.cgi?article=1315&context=tme

(Strickland 2007)

Strickland, Lloyd. 2007. “Explanation of Binary Arithmetic”. Leibniz’s Translations.com.
Die mathematische schriften von Gottfried Wilhelm Leibniz, Vol. 7. Gerhardt, C.I.
223-227. http://www.leibniz-translations.com/binary.htm

(Agarwal & Sen 2014)
Agarwal, Ravi and Sen, Syamal. 2014. Creators of Mathematical and Computational
Science. New York: Springer Cham.

(Heudin 2008)
Heudin, Jean Claude. 2008. Les Creatures Artificielles: Des Automates aux Mondes
Virtuels. Paris, France: Odile Jacob.

(DMS 2017)
Datta, Mallika, Mitra, Suman and Sumayun, SK. 2017. “Revival and Digitization of
Bygone Woven Design through Textile CAD/CAM System- A Case Study”. West Bengal,
India. American International Journal of Research in Science, Technology, Engineering &
Mathematics. http://iasir.net/AIJRSTEMpapers/AIJRSTEM17-105.pdf

(Essinger 2004)
Essinger, James. 2004. Jacquard's Web: How a Hand-Loom Led to the Birth of the Information
Age. Oxford, England: Oxford Press.

(Norman 2019)
Norman. Jeremy. 2019. “ A Prayerbook Entirely Woven by the Jacquard Loom: The First Book
Produced by a Program or Digitally Produced Book?” History of Information.com.
http://www.historyofinformation.com/detail.php?entryid=1870

(Gross. 2015)

Gross, Benjamin. 2015. “The French Connection”. Distillations. Science History Institute.
https://www.sciencehistory.org/distillations/the-french-connection

(Halacy 1970)
Halacy, Daniel Stephen. 1970. Charles Babbage, Father of the Computer. New York:
Crowell-Collier Press.

(Copeland 2017)
Copeland, B. Jack. 2017, "The Modern History of Computing", The Stanford
Encyclopedia of Philosophy (Winter 2017 Edition), Edward N. Zalta (ed.),
https://plato.stanford.edu/archives/win2017/entries/computing-history/

(Swad 2019)

Swade, Doran. “The Babbage Engine”. Computer History Museum.
https://www.computerhistory.org/babbage/engines/

146

http://www.leibniz-translations.com/binary.htm
http://iasir.net/AIJRSTEMpapers/AIJRSTEM17-105.pdf
http://www.historyofinformation.com/detail.php?entryid=1870
https://www.sciencehistory.org/distillations/the-french-connection
https://plato.stanford.edu/archives/win2017/entries/computing-history/
https://www.computerhistory.org/babbage/engines/

(CPRR.org 2014)

CPRR.org 2014, "DID YOU KNOW THAT PUNCHED RAILROAD TICKETS WERE THE
FORERUNNERS OF COMPUTERS?" Central Pacific Railroad Photographic History
Museum http://cprr.org/Museum/Books/Patton_Made_in_USA.html

(Da Cruz 2001)

Da Cruz, Frank. 2001. “Herman Hollerith”. Columbia University Computing History.
http://www.columbia.edu/cu/computinghistory/hollerith.html

(Da Cruz 2019)

Da Cruz, Frank. 2019. “Hollerith 1890 Census Tabulator”. Columbia University
Computing History. http://www.columbia.edu/cu/computinghistory/census-tabulator.html

(Satyasikha 2014)

Satyasikha. 2014. “Herman Hollerith”. Engineering and Technology History Wiki.
https://ethw.org/Herman_Hollerith

(Rosenbaum 1998)

Rosenbaum, David. 1998. Market Dominance: How Firms Gain, Hold, or Lose It and the
Impact on Economic Performance. Connecticut: Praeger Publishers.

(ProCon 2013)

ProCon.org. (2013, February 6). Voting Systems & Use: 1980-2012. Retrieved from
http://votingmachines.procon.org/view.resource.php?resourceID=000274

(Buchholz 1956)

Buchholz, Werner. (1956-06-11). The Link System (PDF). IBM . pp. 5–6. the original .
http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/06-07/102632284.pdf

(Buchholz 1962)

Buchholz, Werner. 1962. Planning a Computer System: Project Stretch. New York:
McGraw Hill Book Company Publishing.

(Swad 2019)

Swade, Doran. 2019 "Internet History of 1960s" Computer History Museum
https://www.computerhistory.org/internethistory/1960s/

(Bemer 2000)

Bemer, Bob 2000 Aug 08 "WHY IS A BYTE 8 BITS? OR IS IT?" Computer History
Vignettes
https://web.archive.org/web/20010411054143/http://www.bobbemer.com/BYTE.HTM

(Koblentz 2004)
Koblentz, Evan Dec. 7, 2004 "LED calculators rule her house" Archive: Computer
Collector Newsletter / Technology Rewind, Jan. 2004 - March 2006
http://www.snarc.net/tr/katie-led.htm

147

http://cprr.org/Museum/Books/Patton_Made_in_USA.html
http://www.columbia.edu/cu/computinghistory/hollerith.html
http://www.columbia.edu/cu/computinghistory/census-tabulator.html
https://ethw.org/Herman_Hollerith
http://votingmachines.procon.org/view.resource.php?resourceID=000274
https://web.archive.org/web/20170404152534/http:/archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/06-07/102632284.pdf
https://en.wikipedia.org/wiki/IBM
http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/06-07/102632284.pdf
http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/06-07/102632284.pdf
https://www.computerhistory.org/internethistory/1960s/
https://web.archive.org/web/20010411054143/http://www.bobbemer.com/BYTE.HTM
http://www.snarc.net/tr/katie-led.htm
http://www.snarc.net/tr/katie-led.htm

(Waterman & Asanovi´c 2017)

Waterman, Andrew Asanovi´c, Krste 2017 "The RISC-V Instruction Set Manual Volume
I: User-Level ISA" Document Version 2.2, SiFive Inc., CS Division, EECS Department,
University of California, Berkeley
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

(NIST 2019)

NIST Employees. 2019.“SI Units”. National Institute of Standards and Technology –
Physical Measurement Laboratory. Maryland.
https://www.nist.gov/pml/weights-and-measures/metric-si/si-units

(McCullagh 2007)

McCullagh, Declan December 5, 2007 "Gigabytes vs. gibibytes class action suit nears
end" CBS INTERACTIVE INC.
https://www.cnet.com/news/gigabytes-vs-gibibytes-class-action-suit-nears-end/

(IEC-W 2019)

IEC Employees. 2019. "About the IEC Vision & mission - Welcome to the IEC"
International Electrotechnical Commission. https://www.iec.ch/about/

(IEC-G 2019)

IEC Employees. 2019. "About the IEC Vision & mission - Global Reach”. International
Electrotechnical Commission. iec.ch/about/globalreach/

(IUCr 1997)
IUCr Employees. 1997. “IUCr 1996 Report – IUPAC Interdivisional Committee on Nomenclature
and Symbols (IDCNS)”. International Union of Crystallography.

https://web.archive.org/web/20130613121942/http://www.chester.iucr.org/iucr-top/cexec/
rep96/idcns.htm

(IEC 2005)

IEC Employees. September, 2005 "Review of Content Standard Letter symbols to be
used in electrical technology IEC 60027" International Electrotechnical Commission.
https://neo.dmcs.pl/ak/IEC_60027-SIUnits.pdf

(Abrahams 2000)

S. C. ABRAHAMS, IUCr Representative November 2000 "Report of the Executive
Committee for 1999 - 15.1. IUPAC Interdivisional Committee on Nomenclature and
Symbols (IDCNS)" Acta Crystallographica Section A: Foundations and Advances,
international union of crystallography
ISSN: 2053-2733 Volume 56 Part 6 Pages 609-642
https://doi.org/10.1107/S0108767300012873

(Buck 2005)

Buck, Jonathan. 2005. “Here Comes Zebi and Yobi”. International Electrotechnical
Commission. 2005-08-15.

148

https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://www.nist.gov/pml/weights-and-measures/metric-si/si-units
https://www.cnet.com/news/gigabytes-vs-gibibytes-class-action-suit-nears-end/
https://www.iec.ch/about/
https://www.iec.ch/about/globalreach/
https://web.archive.org/web/20130613121942/http://www.chester.iucr.org/iucr-top/cexec/rep96/idcns.htm
https://web.archive.org/web/20130613121942/http://www.chester.iucr.org/iucr-top/cexec/rep96/idcns.htm
https://neo.dmcs.pl/ak/IEC_60027-SIUnits.pdf

https://web.archive.org/web/20090912150947/http://www.iec.ch/news_centre/release/nr
2005/nr2005.htm

(TMNT 1998)
Barry N. Taylor, Peter J. Mohr, David B. Newell, and E. Tiesinga "The NIST Reference
on Constants, Units, and Uncertainty" Fundamental Constants Data Center of the NIST
Physical Measurement Laboratory. Online: February 1998 - Last update: June 2019
https://physics.nist.gov/cuu/Units/binary.html

(Thompson & Taylor 2008)

Thompson, Ambler and Taylor, Barry N. March 2008 "Guide for the Use of the
International System of Units (SI)" NIST Special Publication 811 2008 Edition

(IEEE 2009)

IEEE Employees. 2009. “1541-2002 - IEEE Standard for Prefixes for Binary Multiples”.
International Electrical and Electronics Engineering. 18 Sept. 2009
Electronic ISBN: 978-0-7381-3386-7 DOI: 10.1109/IEEESTD.2009.5254933

(Leontiou 2011)

Leontiou, Andrea 2/10/2011 " World's shift from analog to digital is nearly complete"
TechNewsDaily NBCNews.com
http://www.nbcnews.com/id/41516959/ns/technology_and_science-innovation/t/worlds-s
hift-analog-digital-nearly-complete/

(Samson 1999)

Samson December 1999 "Digital Signals - Fundamentals"
https://www.samson.de/document/l150en.pdf

(Stallings 2007)

Stallings, William 2007 "Chapter 4 Transmission Media" Data and Computer
Communications Eighth Edition
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.7540&rep=rep1&type=pdf

(Van Tilborg & Jajodia, 2011)

Van Tilborg, Heck and Jajodia, Sushil (Editors). 2011. Encyclopedia of Cryptography and
Security. (Change to Esc). Netherlands: Springer Science + Business Media.

(Menezes Van Oorshot & Vanstone 1997)

Menezes, Alfred J., Van Oorshot, Paul C., and Vanstone, Scott. 1997. Handbook of
Applied Cryptography (Discrete Mathematics and Its Applications). Florida: CRC Press.

(Paar & Pelzi 2009)
Paar, Christopher and Pelzi, Jan. 2009. Understanding Cryptography: A Textbook for
Students and Practitioners. Heidelberg, Germany: Springer Technology.

(Stross 2006)

Stross, Randall 2006 "Theater of the Absurd at the T.S.A." The New York Times
Company https://www.nytimes.com/2006/12/17/business/yourmoney/17digi.html

149

https://web.archive.org/web/20090912150947/http:/www.iec.ch/news_centre/release/nr2005/nr2005.htm
https://web.archive.org/web/20090912150947/http:/www.iec.ch/news_centre/release/nr2005/nr2005.htm
https://physics.nist.gov/cuu/Units/binary.html
http://www.nbcnews.com/id/41516959/ns/technology_and_science-innovation/t/worlds-shift-analog-digital-nearly-complete/
http://www.nbcnews.com/id/41516959/ns/technology_and_science-innovation/t/worlds-shift-analog-digital-nearly-complete/
https://www.samson.de/document/l150en.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.7540&rep=rep1&type=pdf
https://www.nytimes.com/2006/12/17/business/yourmoney/17digi.html

(Scarfone Jansen Tracy 2008)

Scarfone, Karen Jansen, Wayne Tracy, Miles 2008 "Guide to General Server Security
NIST Special Publication 800-123 Computer Security Division Information Technology
Laboratory National Institute of Standards and Technology
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-123.pdf

(Raymond 2000)

Raymond, Eric Steven 2000 "The Cathedral and the Bazaar - Release Early, Release
Often" http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html

(Germain 2016)

Germain, Jack M. Aug 25, 2016 "25 Years of Linux: What a Long, Strange Trip It's Been"
Linux Insider https://www.linuxinsider.com/story/83838.html

(Gergersen 2017)

Gergersen Erik 2017 Data Encryption Encyclopaedia of Britannica.
https://www.britannica.com/technology/data-encryption

(Fabien Petitcolas 1997)

Petitcolas, Fabien 1997 "Kerckhoffs' principles from « La cryptographie militaire »" The
information hiding homepage https://www.petitcolas.net/kerckhoffs/index.html

(Mann 2002)

Mann, Charles. 2002. “Technology: Homeland Insecurity”. The Atlantic Monthly.
(September edition).

(Ahmed Al-Vahed 2011)
Ahmed Al-Vahed, Haddad Sahhavi 2011 "An overview of modern cryptography"
Semantic Scholar DOI:10.1007/0-387-26090-0_3

(Lafourcade 2013)

Pascal Lafourcade. 2013 Computer Aided Security for Cryptographic Primitives, Voting
protocols, and Wireless Sensor Networks. Cryptography and Security [cs.CR]. Université
de Grenoble, 2012. fftel00807568f

(Kotzanikolaou & Douligeris 2006)

Kotzanikolaou, Panayiotis and Douligeris, Christos. 2006. “Cryptography Primer:
Introduction to Cryptographic Principles and Algorithms”. 460-479.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470099742.app1

(Bellovin 2011)
Bellovin Steven M. 2011 "Frank Miller: Inventor of the One-Time Pad" Cryptologia
Volume 35, Issue 3 p. 203-222 https://doi.org/10.1080/01611194.2011.583711

150

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-123.pdf
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html
https://www.linuxinsider.com/story/83838.html
https://www.britannica.com/technology/data-encryption
https://www.petitcolas.net/kerckhoffs/index.html
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470099742.app1
https://doi.org/10.1080/01611194.2011.583711

(Vernam 1919)
Vernam G. S. 1919 "Secret Signaling System" 1,310,719 Patented July 22, 1919.
https://patents.google.com/patent/US1310719

(Klein 2003)

Klein, Melville. 2003. “Securing Record Communications. The TSEC/KW-26.” National
Security Administration. Retrieved 2012-04-12 . http://www.jproc.ca/crypto/kw26.pdf

(Kahn 1996)
Kahn, David. 1996. The Codebreakers: The Comprehensive History of Secret
Communication from Ancient Times to the Internet. New York: Scribner Press. 744.

(GBCGMV 2002)
Golomb, Berlekamp, Cover, Gallager, Massey, and Viterbi 2002. "Claude Elwood
Shannon" Notices of the AMS VOLUME 49, NUMBER 1
http://www.ams.org/notices/200201/fea-shannon.pdf

(Shannon 1949)
Shannon C. E. 1949 "Communication Theory of Secrecy Systems" Bell System
Technical Journal http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

(Holden 2017)

Holden, Joshua. 2017 . The Mathematics of Secrets: Cryptography from Caesar Ciphers
to Digital Encryption. New Jersey: Princeton University Press.

(Reuvers & Simons 2013)
Reuvers, Paul & Simons, Marc 2013. "One-Time Pad (OTP)" Last changed: Tuesday, 29
January 2013 cryptomuseum.com
https://web.archive.org/web/20140314175211/http://www.cryptomuseum.com/crypto/otp.
htm

(Smith 2007)

Smith Rick 2007 "ONE-TIME PADS" JUNE 9, 2007 CRYPTOSMITH
https://cryptosmith.com/2007/06/09/one-time-pads/

(Hannan & Asif 2017)

Shaikh Abdul Hannan and Ali Mir Arif Mir Asif 2017 Analysis of Polyalphabetic
Transposition Cipher Techniques used for Encryption and Decryption International
Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 2,
February 2017 ISSN (Online): 2409-4285 www.IJCSSE.org Page: 41-46
http://ijcsse.org/published/volume6/issue2/p3-V6I2.pdf

(Houtven 2013)

Houtven, Laurens Van 2013. Crypto 101 Copyright 2013-2017
https://www.crypto101.io/Crypto101.pdf

151

https://patents.google.com/patent/US1310719
http://www.jproc.ca/crypto/kw26.pdf
http://www.ams.org/notices/200201/fea-shannon.pdf
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf
https://web.archive.org/web/20140314175211/http://www.cryptomuseum.com/crypto/otp.htm
https://web.archive.org/web/20140314175211/http://www.cryptomuseum.com/crypto/otp.htm
https://cryptosmith.com/2007/06/09/one-time-pads/
http://ijcsse.org/published/volume6/issue2/p3-V6I2.pdf
https://www.crypto101.io/Crypto101.pdf

(Branstad 1978)

Branstad, Dennis K.1978. "Computer Security and the Date Encryption Standard" NBS
Special Publication 500-27 U.S. DEPARTMENT OF COMMERCE National Bureau of
Standards https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-27.pdf

(Burr 1977)

Burr, William. 1977. “Data Encryption Standard”. 250-253.
https://nvlpubs.nist.gov/nistpubs/sp958-lide/250-253.pdf

(Keliher 1997)
Keliher Liam 1997. Substitution-Permutation Network Cryptosystems Using
Key-Dependent S-Boxes Queen's University

(Simmons 2009)
Simmons J., Gustavus. 2009 “Data Encryption Standard: Cryptology”. Encyclopaedia
Britannica. https://www.britannica.com/topic/Data-Encryption-Standard

(Stallings 2017)
Stallings, William. 2017. “Cryptography and Network Security Principals and Practices”.
Seventh Edition Global Edition Pearson Education Limited 2017 ISBN 10:1-292-15858-1

(MHFP 2015)
Charalampos Manifavas, George Hatzivasilis, Konstantinos Fysarakis and Yannis
Papaefstathiou A survey of lightweight stream ciphers for embedded systems Security
Comm. Networks 2016; 9:1226–1246 21 December 2015 https://onlinelibrary.wiley.com/
DOI: 10.1002/sec.1399

(Britannica 2016)
Editors of Encyclopaedia of Britannica. 2016 “Cipher: Cryptology”. Encyclopaedia
Britannica. https://www.britannica.com/topic/cipher

(Asif Buchanan Li 2018)

Asif, Rameez Buchanan, William J. Li, Shancang 2018 Lightweight cryptography
methods The Cyber Academy, Edinburgh Napier University, UK University of the West of
England, UK DOI: 10.1080/23742917.2017.1384917

(Brown & Seberry 1990)

Brown, Lawrence Seberry, Jennifer 1990 ON THE DESIGN OF PERMUTATION P IN
DES TYPE CRYPTOSYSTEMS Department of Computer Science University College,
UNSW, Australian Defence Force Academy
https://link.springer.com/content/pdf/10.1007%2F3-540-46885-4_71.pdf

(Kopal 2018)

Kopal Nils 2018 Solving Classical Ciphers with CrypTool 2 Applied Information Security
University of Kassel http://www.ep.liu.se/ecp/149/010/ecp18149010.pdf

152

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-27.pdf
https://nvlpubs.nist.gov/nistpubs/sp958-lide/250-253.pdf
https://www.britannica.com/topic/Data-Encryption-Standard
https://onlinelibrary.wiley.com/
https://www.britannica.com/topic/cipher
https://link.springer.com/content/pdf/10.1007%2F3-540-46885-4_71.pdf
http://www.ep.liu.se/ecp/149/010/ecp18149010.pdf

(GJMN 2015)
Jian Guo, Jeremy Jean, Nicky Mouha, and Ivica Nikoli´c 2015 More Rounds, Less
Security? 1 Nanyang Technological University, Singapore
https://eprint.iacr.org/2015/484.pdf

(Dulaney & Easttom 2017)

Dulaney, Emmett and Easttom, Chuck. 2017. CompTIA Security+ Study Guide: Exam
SY0-501. California: Sybex Inc.7 th Ed.

(PSP, 2016)
Pritam Singh Patel, Ravendra Ratan Singh , Satya Patra 2016 Secure Communications
over Insecure Networks Using Cryptogram ISAR - International Journal of Electronics
and Communication Ethics - Volume 1 Issue 1, Jan – Feb 2016

(LFS 2018)

Leech, David P., Ferris, Stacey and Scott, John T. 2018. “The Economic Impacts of the
Advanced Encryption Standard, 1996 ‐ 2017”. National Institute of Standards and
Technology. https://nvlpubs.nist.gov/nistpubs/gcr/2018/NIST.GCR.18-017.pdf

(NIST 2018)
NIST 2018. NIST’s Encryption Standard Has Minimum $250 Billion Economic Benefit,
According to New Study NIST September 19, 2018
https://www.nist.gov/news-events/news/2018/09/nists-encryption-standard-has-minimum
-250-billion-economic-benefit

(Gilmore 2005)

Gilmore John 2005 DES (Data Encryption Standard) Review at Stanford University
September 20, 2005 (updated August 20, 2009, March 20, 2012, and December 21,
2015) http://www.toad.com/des-stanford-meeting.html

(Almunawar 2001)

Almunawar Mohammad Nabil SECURING ELECTRONIC TRANSACTIONS TO
SUPPORT E-COMMERCE Faculty of Business, Economics & Policy Studies Universiti
Brunei Darussalam https://arxiv.org/ftp/arxiv/papers/1207/1207.4292.pdf

(Chernev 2019)

Chernev, Bobby. 2019. “What Is AES and Why You Already Love It”. TechJury.
https://techjury.net/blog/what-is-aes/

(Buchmann 2001)
Buchmann, Johannes. 2001. Introduction to Cryptography (Undergraduate Texts in
Mathematics). New York: Springer Publishing. 1 st edition.

153

https://eprint.iacr.org/2015/484.pdf
https://nvlpubs.nist.gov/nistpubs/gcr/2018/NIST.GCR.18-017.pdf
https://www.nist.gov/news-events/news/2018/09/nists-encryption-standard-has-minimum-250-billion-economic-benefit
https://www.nist.gov/news-events/news/2018/09/nists-encryption-standard-has-minimum-250-billion-economic-benefit
http://www.toad.com/des-stanford-meeting.html
https://arxiv.org/ftp/arxiv/papers/1207/1207.4292.pdf
https://techjury.net/blog/what-is-aes/

(Daemen & Rijmen 2002)
Daemen, Joan and Rijmen, Vincent. 2002. The Design of RijndaeL: AES - The
Advanced Encryption Standard (Information Security and Cryptography). New York:
Springer Publishing.

(NIST 2001)

NIST 2001. “Announcing the Advanced Encryption Standard (AES)”. Federal
Information Processing Standards Publication 197.
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

(Gladman 2003)

Gladman, Brian. 2003. “A Specification for Rijndael, the AES”. v3.11, 12 th .
http://asmaes.sourceforge.net/rijndael/rijndaelImplementation.pdf

(Farwa Shah Idrees 2016)

Farwa, Shabieh, Shah, Tariq and Idrees, Lubna. 2016. “A Highly Nonlinear S-box Based
on a Fractional Linear Transformation”. Farwa et al. SpringerPlus (2016) 5:1658 DOI
10.1186/s40064-016-3298-7

(Grocholewska-Czurylo 2011)
Grocholewska-Czurylo, Anna. 2011. “Cryptographic properties of modified AES-like
S-boxes”. Lublin, Poland. Institute of Control and Information Engineering, Pozna´n
University of Technology. Annals UMCS. 37-48.
https://pdfs.semanticscholar.org/e260/29fbad216db2428eaeb9aca7f074973f0ec1.pdf

(Nyberg 1991)
Nyberg, Kaisa. 1991. “Perfect nonlinear S-boxes”. Finnish Defense Force and University
of Helsinki. https://link.springer.com/content/pdf/10.1007%2F3-540-46416-6_32.pdf

(Shannon 1945)
Shannon, Claude. 1945. “A Mathematical Theory of Cryptography”. Bell System
Technical Memo MM 45-110-02, Sept. 1.
https://www.iacr.org/museum/shannon/shannon45.pdf

(PM 2015)

Prime.mover 2015. "Definition:Set" Proof Wiki Last Modified 09/03/2019
https://proofwiki.org/wiki/Definition:Set

(SKABMB 2010)

 Sakalli, M. Togla, Karaahmetoglu, Osman, Aslan, Bora, Bulus, Erkan, Mesut, Andak,
and Buyusaracoglu, Fatima . 2010. “On the Algebraic Expression of the AES S-Box Like
S-Boxes”. Turkey. Communications in Computer and Information Science.
https://www.academia.edu/19213177/On_the_Algebraic_Expression_of_the_AES_S-Bo
x_Like_S-Boxes

(Easttom 2014.)
Easttom, Chuck. 2014. “A Guideline for Designing Cryptographic S-Boxes”.
https://pdfs.semanticscholar.org/7ae7/bcad617a7106afabc0ee7f29b16b6cadcb22.pdf

154

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://asmaes.sourceforge.net/rijndael/rijndaelImplementation.pdf
https://pdfs.semanticscholar.org/e260/29fbad216db2428eaeb9aca7f074973f0ec1.pdf
https://link.springer.com/content/pdf/10.1007%2F3-540-46416-6_32.pdf
https://www.iacr.org/museum/shannon/shannon45.pdf
https://proofwiki.org/wiki/Definition:Set
https://www.academia.edu/19213177/On_the_Algebraic_Expression_of_the_AES_S-Box_Like_S-Boxes
https://www.academia.edu/19213177/On_the_Algebraic_Expression_of_the_AES_S-Box_Like_S-Boxes
https://pdfs.semanticscholar.org/7ae7/bcad617a7106afabc0ee7f29b16b6cadcb22.pdf

(Katiyar Jeyanthi 2019)

Katiyar, Shishir and Jeyanthi, N. 2019. “Pure Dynamic S-Box Construction”. India: VIT
University. International Journal for Computers.
https://www.iaras.org/iaras/filedownloads/ijc/2016/006-0005.pdf

(Krishnamurthy Ramaswamy 2008)

Krishnamurthy, G.N. and Ramaswamy, V. 2008. “Making AES Stronger: AES with Key
Dependent S-Box”. IJCSNS International Journal of Computer Science and Network
Security, VOL.8 No.9, ed. September.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.572.140&rep=rep1&type=pdf

(Cid Murphy Robshaw 2006)
Cid, Carlos, Murphy, Sean and Robshaw, Matthew. 2006. Algebraic Aspects of the
Advanced Encryption Standard. New York: Springer Science + Business Media LLC.

(Gallian 2016)
Gallian, Joseph. 2016. Contemporary Abstract Algebra. California: Cengage Learning.
9 th edition.

(Dong 2010)

Dong, Changyu. 2010 “Math in Network Security: A Crash Course”.
https://www.doc.ic.ac.uk/~mrh/330tutor/index.html

(Diffie Hellman 1979)
Diffie, Whitfield and Hellman, Martin. 1979. “Privacy and Authentication: An Introduction
to Cryptography”. Proceedings of the IEEE, Vol. 67, No. 3, March
https://ee.stanford.edu/~hellman/publications/32.pdf

(Lipmaa Rogaway Wagner 2000)
Lipmaa, Helger, Rogaway, Phillip and Wagner, David. 2000. “Comments to NIST
concerning AES Modes of Operations: CTR-Mode Encryption”. Berkeley: University of
California. https://web.cs.ucdavis.edu/~rogaway/papers/ctr.pdf

(Ferdinand 2017)
Ferdinand Sibleyras. 2017. Cryptanalysis of the Counter mode of operation.
Cryptography and Security [cs.CR]. HAL id: hal-01662040f
https://hal.inria.fr/hal-01662040/document

(Schiller Crocker 2005)

Schiller, J. Crocker, S. 2005. Randomness Requirements for Security Network Working
Group Request for Comments: 4086 https://tools.ietf.org/html/rfc4086

(Housley 2009)

Housley, R. 2009. "Cryptographic Message Syntax (CMS)" Network Working
Group.Request for Comments: 5652 https://tools.ietf.org/html/rfc5652

155

https://www.iaras.org/iaras/filedownloads/ijc/2016/006-0005.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.572.140&rep=rep1&type=pdf
https://www.doc.ic.ac.uk/~mrh/330tutor/index.html
https://ee.stanford.edu/~hellman/publications/32.pdf
https://web.cs.ucdavis.edu/~rogaway/papers/ctr.pdf
https://hal.inria.fr/hal-01662040/document
https://tools.ietf.org/html/rfc4086
https://tools.ietf.org/html/rfc5652

(Housley 2004)
Housley, R. 2004. “Using Advanced Encryption Standards (AES) Countermode with
IPsec Encapsulating Security Payload (ESP)”. Network Working Group. Request for
Comments: 3686 https://tools.ietf.org/html/rfc3686#section-2.1

(Ferguson Schneier 2003)

Ferguson, Neils and Schneier, Bruce. 2003. Practical Cryptography. Indiana: Wiley
Publishing Inc.

(Dworkin 2001)
Dworkin, Morris. 2001. “Recommendations for Block Cipher Modes of Operation:
Methods and Techniques”. Maryland: National Institute of Standards and Technology.
NIST Special Publication 800-38A.
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf

(Kuo-Tsang Huang Chiu Shen 2013)
Kuo-Tsang Huang, Kuo-Tsang, Chiu, Jung-Hui and Shen, Sung-Shiou. 2013. “A Novel
Structure with Dynamic Operation Mode For Symmetric Key-Block Ciphers”.
International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.1,
January. http://airccse.org/journal/nsa/0113nsa02.pdf

(Jackson 2017)
Jackson, Nicholas. 2017. “A Course in Abstract Algebra”. Warwick, England.
http://dl.icdst.org/pdfs/files1/54f189606fea45076e942b7166fa9af1.pdf

(Cohn 1981)

Cohn, P. M. 1981. Universal Algebra. New York: Springer Science + Business Media
LLC.

(Smart 2016)
Smart, Nigel P. 2016. Cryptography Made Simple. New York: Springer Science +
Business Media LLC.

(O’Leary 2015)

O’Leary, Michael. 2015. A First Course in Mathematical Logic and Set Theory. Indiana:
Wiley Publishing Inc. 1 st ed.

(Sedgewick Wayne 2011)

Sedgewick, Robert and Wayne, Kevin. 2011. Algorithms. New Jersey: Pearson
Education Inc. 4 th Ed.

(Fedler 2013)

Fedler, Rapahel. 2013. “Padding Oracle Attacks”. Seminar Innovative Internet
Technologies and Mobile Communications, SS 2013 Chair for Network Architectures and
Services Department of Computer Science, Technische Universität München.
https://pdfs.semanticscholar.org/2b88/e2925523e46b523fd98b8f2b349defcf76f7.pdf

156

https://tools.ietf.org/html/rfc3686#section-2.1
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://airccse.org/journal/nsa/0113nsa02.pdf
http://dl.icdst.org/pdfs/files1/54f189606fea45076e942b7166fa9af1.pdf
https://pdfs.semanticscholar.org/2b88/e2925523e46b523fd98b8f2b349defcf76f7.pdf

(Bello Danjuma Simon 2018)
Bello, M., Danjuma, Mustapha and Simon, Bulus. 2018. “On the Simplicity of
Permutation Groups”. Global Scientific Journals. Vol. 6, Issue. 1, January.
http://www.globalscientificjournal.com/researchpaper/ON-THE-SIMPLICITY-OF-PERMU
TATION-GROUPS.pdf

(Mcanet 2009)

Mcanet 2009. " Ruido señal digital " Own work
https://commons.wikimedia.org/wiki/File:Imagen_4.png

(Bilou 2010)
Bilou 2010 . " Schematic depiction of the matrix product AB of two matrices A and B. "
Own work https://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg

(Wiki 2002)

2002 "Matrix multiplication" Wikimedia Foundation, Inc. last edited on 7 September 2019
https://en.wikipedia.org/wiki/Matrix_multiplication#Definition

(Wiki 2001)
Wikipedia 2001 "Specific units of IEC 60027-2 A.2 and ISO/IEC 80000" Wikimedia
Foundation, Inc. last edited on 28 August 2019
https://en.wikipedia.org/wiki/Binary_prefix#cite_ref-70

157

http://www.globalscientificjournal.com/researchpaper/ON-THE-SIMPLICITY-OF-PERMUTATION-GROUPS.pdf
http://www.globalscientificjournal.com/researchpaper/ON-THE-SIMPLICITY-OF-PERMUTATION-GROUPS.pdf
https://commons.wikimedia.org/wiki/File:Imagen_4.png
https://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg
https://en.wikipedia.org/wiki/Matrix_multiplication#Definition
https://en.wikipedia.org/wiki/Binary_prefix#cite_ref-70

