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Introduction  
 

This   report   guides   the   unacquainted   reader   to   develop   an   understanding   of   the   context,  
foundations,   and   mechanism   implemented   by   the   world's   most   widely   used   cryptographic  
system,   the   Advanced   Encryption   Standard   (AES).   There   is   quite   a   lot   of   ground   to   cover   and  
we   shall   attempt   it   with   a   high   degree   of   efficiency.   What   follows   is   an   overview   of   the   3   parts  
that   comprise   this   report   along   with   constituent   sections.  

 

 

Part   1,   A   History   of   Symmetric   Key   Block   Ciphers,   provides   a   functional   understanding   of   the  
fundamental   properties,   background,   and   historical   context   of   the   AES.  

Section   1,   Binary   Data,   focuses   on   the   format   of   the   inputs   and   outputs   utilized   by   all   digital  
processes,   including   those   of   the   AES.   The   section   introduces   the   process   of   data   expression  
via   binary   numeral   systems,   the   conception   of   this   methodology,   its   initial   applications,  
contemporary   definitions   and   standards,   modern   representation,   and   then   transitions   into   the  
topic   of   data   security   by   cryptography.  

Section   2,   Modernization   of   Cryptography,   explains   two   concepts   that   propelled   cryptography  
from   a   secretive   art   to   a   modern   science:   the   shift   away   from   security   by   obscurity   and   system  
security   via   the   use   of   cryptographic   keys.   We   then   move   on   to   a   summary   of   modern  
cryptographic   study,   applications,   and   techniques   to   arrive   at   a   breakdown   of   the   first   ever  
encryption   method   proven   to   be   perfectly   secure,   the   One   Time   Pad.   We   explore   the   practical  
implications,   and   the   weaknesses   of   this   perfectly   secure   system.  

Section   3,   Symmetric   Key   Cryptography,   addresses   the   modern   derivatives   of   the   One   Time  
Pad   with   great   attention   to   Symmetric   Key   Block   Ciphers.   We   explore   the   impact   of   the   first  
national   cryptographic   standard,   some   relevant   definitions,   the   principles   of   symmetric   cipher  
design,   and   the   issues   of   key   management.   Finally   we   become   acquainted   with   the   AES,   of  
which,   the   mathematical   foundations   and   an   example   implementation   are   the   focus   of   the  
remainder   of   this   report.  
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Part   2,   Mathematics   of   the   Advanced   Encryption   Standard,   addresses   the   mathematical  
concepts   necessary   for   a   foundational   understanding   of   AES   operations.  

Section   4,   Set   Theory,   examines   the   elements   operated   upon   by   the   cryptographic   primitives   of  
the   AES.   These   systems   are   implemented   with   finite   elements.   Sets   with   which   most   are  
familiar,   such   as   the   set   of   integers,   are   infinite.   We   work   with   a   functional   definition   of   sets,  
known   as   naive   set   theory,   to   define   unordered   collections   of   distinct   objects.   A   given   Set   is  
defined   by   the   properties   of   its   members,   whether   by   shared   properties,   or   a   lack   thereof,   such  
as   the   set   of   even   numbers,   which   share   evenness,   and   lack   oddness.   Once   a   definition   is  
established,   we   are   able   to   analyse   a   Set   and   determine   the   algebraic   properties   held   by  
relations   between   set   members,   represented   by   mathematical   operations   of   varied   complexity.  

Section   5,   Number   Theory,   facilitates   the   understanding   of   cryptographic   algorithms   through   the  
examination   of   relevant   mathematical   operations.   Modern   cryptographic   primitives   implemented  
in   both   symmetric   and   asymmetric   ciphers   are   based   on   arithmetic   within   a   finite   number   of  
elements.   Not   only   is   modular   arithmetic   a   common   way   of   performing   arithmetic   in   a   finite   set  
of   integers,   it   is   the   method   implemented   by   the   AES.   As   such,   understanding   modular  
arithmetic   and   its   application   is   of   fundamental   importance   in   the   context   of   this   report   as   well   as  
in   the   greater   scope   of   modern   cryptographic   study   and   practice.  

Section   6,   Abstract   Algebra,   concerns   those   properties   that   define   the   algebraic   structures  
which   mathematically   model   the   mechanisms   of   the   AES.   Through   selective   abstraction,  
mathematicians   have   defined   algebraic   structures   now   integral   to   both   pure   mathematics   and  
the   applied   sciences.   We   shall   see   how   the   definition   of   a   binary   operation   and   the   relation   it  
creates,   affects   the   set   for   which   it   is   defined.   We   begin   from   the   most   basic   structure,   a   general  
set   for   which   a   binary   operation   is   defined,   then   progress   through   the   individual   properties  
necessitated   by   the   operations   of   the   AES   and   define   the   algebraic   structures   which   result   as  
they   increase   in   complexity.   This   incremental   addition   of   properties   creates   a   hierarchy   of  
algebraic   structures.   Groups,   rings,   and   fields   constitute   the   basic   hierarchy   of   abstract  
algebraic   objects   and   are   required   for   the   definition   and   understanding   of   the   AES.  

Section   7,   Galois   Field   Arithmetic,   enumerates   the   arithmetic   operations   defined   for   the   AES.  
The   transformations   implemented   by   the   AES   operate   within   the   Galois   Field   of   256   members  
known   as   .   Within   this   algebraic   structure   we   redefine   the   arithmetic   operations   of F (2 )  G 8  
addition,   subtraction,   multiplication,   and   division   such   that   these   operations,   when   performed   on  
the   underlying   set,   remain   consistent   with   the   behaviour   expected   of   an   infinite   set.   When   a  
system   such   as   this   has   been   properly   defined,   it   allows   us   to   perform   finite   field,   or   Galois  
Field,   arithmetic,   that   is,   perform   operations   with   finite   members   which   adhere   to   arithmetic   laws  
consistent   with   a   field   of   finite   members.   Due   to   the   property   of   closure,   maintained   by   the  
algebraic   structure   of   this   field,   we   are   assured   that   all   mathematical   operations   defined   in   the  
field   result   in   an   8-bit   number.   Thus   operands   and   resultants   are   limited   to   the   range   ,  ≤ i  0 < 28  
represented   by   numbers   from   0   to   255.   Rigourous   definition   of   the   mathematics   involved   grants  
an   assurance   of   security,   and   the   ability   to   keep   intermediate   results   under   8-bits   creates  
substantial   increases   in   efficiency.  
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Part   3,   Specification   of   the   Advanced   Encryption   Standard,   defines   an   algorithmic   specification  
for   the   AES   which   includes   it's   notation,   inputs,   and   outputs   as   well   as   conventions   for  
describing   them,   a   full   specification   of   the   AES   system   which   provides   message   confidentiality  
for   a   cipher   block   under   a   cryptographic   key,   and   modes   of   operation,   which   extends   block  
cipher    security   to   the   whole   of   a   message.  

 

Section   8,   Notation   and   Conventions,   defines   the   notation   and   conventions   used   to   model   and  
algorithmically   specify   the   AES.   This   includes   the   ordering   and   indexing   of   bits,   bytes,   and  
words   which   comprise   the   AES   operands,   as   well   as   descriptions   of   the   parameters   and  
resultants   that   characterize   the   key   expansion,   encryption,   and   decryption   routines   of   the   AES.  

Section   9,   Functions,   details   a   method   by   which   the   mechanisms   of   the   AES'   cryptographic  
transformations   maybe   algorithmically   implemented.    As   a   key   iterated   product   cipher,   the   AES  
executes   a   number   of   round   function   iterations,   on   a   block   of   plaintext   bits ,   as   discussed   in  
Section   3.3.    E ach   round   transformation   is   executed   in   the   same   manner,   with   variance   provided  
by   round   values,   generally   called   round   constants   and   a   round   key.     The   AES   is   fundamentally  
composed   of   a   key   schedule   and   a   block   cipher.   The   AES   key   schedule   algorithm   calculates  
round   keys   and   the   AES   cipher   consists   of   the   round   function,   specifically   composed   of   four  
byte-oriented   transformations  

Section   10,   Block   Cipher   Modes   of   Operation,   explores   a   few   basic   standardised   block   cipher  
modes   of   operation,   these   procedures   were   developed   to   extend   block   cipher   capability.  
Individually,   a   block   cipher   serves   to   provide   message   confidentiality,   protection   from  
unauthorized   access.   However,   a   block   cipher   is   only   defined   for   a   single   block   size  
transformation   per   key.   In   practice,   the   size   of   a   message   is   larger   than   the   block   size,   often  
much   larger.    It   is   because   of   this   that    block   ciphers   are   classified   as   cryptographic   primitives,   to  
be   used   as   a   component   in   a   secure   cryptosystem.    While   the   applications   of   block   cipher  
modes   are   many,   the   few   focused   by   this   document   are   procedures   that   allow   a   generic   block  
cipher   to   transform   data   allocations   larger   than   a   single   block   and   achieve   secure   results   under  
a   fixed   key.  
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A   Brief   History  
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Advanced   Encryption   Standard  
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Section   1   :   Binary   Data  

1.1   :   The   Binary   Numeral   System  
 

All   data   is   represented   as   sequences   of   symbols   of   a   finite   or   well-defined   set.    (Greenlaw   &   Hoover   1998)   
While   data   can   be   represented   by   any   system   of   variance,   the   most   abundant   is   the  
contemporary   binary   system   used   by   digital   devices.    (Greenlaw   &   Hoover   1998)     A   digital   device  
represents   a   singular   piece   of   data   by   sequences   drawn   from   a   "binary   alphabet",   a   term   that  
defines   a   set   that   contains   two   distinct   entities.    (Greenlaw   &   Hoover   1998)     Any   number   can   be  
represented   by   a   sequence   of   binary   digits.    (Greenlaw   &   Hoover   1998)     Theoretically,   a   binary   value  
represents   a   sequence   of   "ON"   and   "OFF".    (Greenlaw   &   Hoover   1998)     Functionally,   a   binary   0   indicates  
off   while   a   binary   1   indicates   an   electrical   signal   or   base   2   exponent   that   is   turned   on.    (Greenlaw   &  

Hoover   1998)     Table   1,   below,   illustrates   this   system   using   the   binary   value   : 0100110  1   

 

Exponent:  2 7  2 6  2 5  2 4  2 3  2 2  2 1  2 0  
Value:  128  64  32  16  8  4  2  1  

ON/OFF:  1  0  1  0  0  1  1  0  
Table   1  

 

To   derive   the   value   of   a   given   binary   representation   in   Table   1,   we   place   the   binary   digits   in   a  
column.   Each   binary   digit   is   then   aligned   with   a   sequence   of   exponentiation   of   the   number,   the  
base,   two,   with   the   exponent's   value   beginning   at   0   increasing   by   one   as   we   move   digit  
positions   from   right   to   left.   We   interpret   the   value   of   the   binary   sequence   by   summing   "ON"  
column   values,   those   that   contain   a   1   to   achieve:   .   Thusly,   any 128 2 ) 166  ( + 3 + 4 + 2 =   
mechanism   capable   of   two   mutually   exclusive   states   may   represent   a   given   binary   value.   By  
example,   the   following   binary   sequences   shown   in   Figure   1,   below,   are   interpretable   as   the  
value   166:  

 

1 0 1 0 0 1 1 0  
∎ ☐ ∎ ☐ ☐ ∎ ∎ ☐  
y n y n n y y n  
+ - + - - + + -  

Figure   1  

 

Data   is   measured   by   the   bit,   a   basic   unit   of   information   in   the   field   of   Information   Theory. (Shannon  

1948)    The   bit   is   an   abstraction   of   a   logical   value   possessing   one   of   two   distinct   states. (Shannon   1948)  
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Examples   of   such   a   system   are   abundant,   even   in   nature,   day   and   night,   magnetic   and   electric  
polarity,   or   the   state   of   a   neuron.   In   the   realm   of   information   theory,   a   bit   is   alternatively   called   a  
shannon   (Sh) . (Rowlett   2018)    Claude   Shannon   was   responsible   for   both   developing   the   field   of  
information   theory   and   publishing   " bit"    in   1948. (Shannon   1948)    The   definition   of   a   shannon   is   derived  
from   the   central   tenet   of   information   theory,   entropy,   the   general   concept   that   unlikely   events  
carry   more   information.   "...if   a   volcano   rarely   erupts,   then   a   message   that   it   is   erupting   is   more  
informative   than   a   message   it   is   not   erupting". (Rowlett   2018   par   shannon)    By   definition,   a   message   of  
probability     has   an   information   content   equal   to     shannons. (Rowlett   2018)    As   an   example,   if p  p  log2  
the   set   of   data   symbols   consists   only   of   the   26   lowercase   letters   of   the   English   alphabet,   with   all  
strings   being   equally   likely,   then   the   probability   of   a   message   of   length   10   is   and   its 1 26 )  ( / 10  
information   content   is   .   A   single   shannon   represents   the   information 0(log  26)  1 2 = 7.004 Sh  4  
content   of   an   event   with   probability    1⁄2,      (Rowlett   2018)    This   means   a   single   shannon (log  2) 1 Sh  1 2 =   
defines   the   outcomes   of   a   system   where   there   is   equal   probability   of   either   of   two   outcomes,   a  
theoretical   coin   toss,   which   we   can   represent   with   one   bit.   By   extension,   a   bit   sequence   of   a  
given   number,   with   all   possible   bit   sequences   being   equally   likely,   has   an   information   content,  
expressed   in   shannons,   equal   to   the   number   of   bits   in   the   sequence. (Rowlett   2018)    For   this,   the   unit  
was   originally   the   bit. (Rowlett   2018)    Shannon   credits   the   coinage   of   the   "bit"   unit   to   John   W.   Tukey,  
who   also   coined   "software". (Buchholz   2000   p.   69)    Tukey   uses   "bit"   as   a   portmanteau   for   "binary  
digit". (Shannon   1948   p.   1)  

 

A   bit   is   physically   represented   by   a   two-state   device;   any   mechanism   that   exists   and   may   switch  
between   one   of   two   possible   states. (Shannon   1948)    Two   state   devices   have   a   myriad   of   physical  
implementations   in   modern   digital   devices,   as   relative   levels   of   charge   or   voltage,   a   sequence   of  
current   pulses,   or   the   state   of   a   circuit. ,(Kuphaldt   2001),   (AAKCT   2018)    A   majority   of   modern   digital   devices  
use   positive   logic,   the   expression   of   a   logical   or   digital   value   of   1   by   a   more   positive   value  
relative   to   the   representation   of   0. (Kuphaldt   2001)    Dynamic   random-access   memory   uses  
semiconductors   to   represent   logical   binary   values   via   capacitors   with   two   levels   of   electric  
charge. (AAKCT   2018)    Compact   discs,   Blu-ray,   and   other   optical   disc   technologies   encode   data   via  
microscopic   indentations   on   a   reflective   surface,   called   pits. (BDA   2010)      One   dimensional   bar   codes  
use   the   thickness   of   parallel,   alternating   black   and   white   lines   to   encode   binary   values. (Woodland   &  

Bernard   1949)    Familiar   symbology,   such   as   alphabetic   letters,   numerical   digits,   punctuation   marks,  
and   others   rely   on   popular   character   encoding   conventions   to   translate   from   the   state   of   data  
stored   on   a   physical   device   to   human   interpretable   symbols. (Greenlaw   &   Hoover   1998)  
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1.2   :   Conception   of   the   Binary   Numeral   System  
 

 

Our   contemporary   binary   encoding   scheme   was   conceptualized   in   Europe   during   the  
17th   century.   Thomas   Harriot,   an   English   mathematician   of   incredible  
accomplishment (Apt   2019) ,   recorded   the   first   use   of   a   binary   numeral   system   c.   1600  
AD. (O’Connor   &   Robertson   2019)    In   fact,   Harriot   had,   "considered   working   with   not   only   binary  
systems,   but   ternary,   quaternary,   quinternary,   and   higher   systems   as   well".    (O’Connor   &  

Robertson   2019   par.   3)    Harriot's   studies   were   often   secretive,   his   results   unpublished   for   fear  
of   being   labeled   a   heretic.   Records   were   found   after   his   death,   among   7000   pages   of  
notes. (Apt   2019)    These   notes,   now   housed   by   the   British   Museum,   contain   a   page   with  
the   information   displayed   by   Table   2,   to   the   right.    (Shirley   1951)  

1  1  
2  10  
3  11  
4  100  
5  101  
6  110  
7  111  
8  1000  

Table   2  

 

In   1605,   Francis   Bacon,   credited   with   inventing   the   scientific   method (Ochulor   2011) ,   developed   an  
encoding   by   which   the   Latin   alphabet   could   be   reduced   to   binary   sequences, (Gallup   2010)    a   logical  
predecessor   of   modern   encoding.   Bacon’s   cypher,   a   substitution   cipher,   is   given   by   Table   3,  
below. (Gallup   2010)    Developing   a   general   theory   of   binary   encoding   Bacon   deduced   these   digits  
could   be   represented   by   any   abstraction,   "provided   those   objects   be   capable   of   a   twofold  
difference   only",   offering   examples   such   as,   "by   Bells,   by   Trumpets,   by   Lights   and   Torches,   by  
the   report   of   Muskets,   and   any   instruments   of   like   nature". (Gallup   2010   p.   67)  

 

A  aaaaa  G  aabba  N  abbaa  T  baaba  

B  aaaab  H  aabbb  O  abbab  U   &   V  baabb  

C  aaaba  I   &   J  abaaa  P  abbba  W  babaa  

D  aaabb  K  abaab  Q  abbbb  X  babab  

E  aabaa  L  ababa  R  baaaa  Y  babba  

F  aabab  M  ababb  S  baaab  Z  babbb  

Table   3  

 

The   first   known   publication   of   a   binary   system   was   by   Juan   Caramuel   y   Lobkowitz   (JCL)   a  
prodigious   Spanish   scholar   and   author. (O’Connor   &   Robertson   2010)    In   1670   JCL   published   an  
encyclopaedia   of   mathematics   entitled   Mathesis   Biceps:   Vetus   Et   Nova.   This   work   defined   the  
general   principle   and   outlined   benefits   of   numeric   systems   other   than   the   predominant   "base  
10".   Donald   Knuth,   noted   American   computer   scientist    wrote   of   JCL's   work   in   The   Art   of  
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Computer   Programming   "Caramuel   discusses   the   representation   of   numbers   in   radices   2,   3,   4,  
5,   6,   7,   8,   9,   10,   12,   and   60   at   some   length,   but   gave   no   examples   of   arithmetic   operations   in  
nondecimal   systems   (except   for   the   trivial   operation   of   adding   unity)."    (O’Connor   &   Robertson   2010   par   6)  

 

While   publication   of   the   modern   binary   system   can   be   traced   back   to   recent   centuries,   systems  
related   to   binary   numbers   have   evolved   throughout   various   ancient   cultures.   Gottfried   Leibniz,   a  
distinguished   German   polymath   and   philosopher,   was   specifically   inspired   by   an   ancient  
Chinese   divination   text,   the   I   Ching. (Smith   2008)    Leibniz's   fascination   with   binary   numerals   was  
inspired   by   his   theology. (Smith   2008)    Leibniz   interpreted   depictions   on   the   I   Ching   as   corresponding  
to   64   binary   representations,   from   0   to   111111. (Wilhelm   &   Baynes   1967)    Leibniz   believed   this   to   be  
evidence   of   the   universality   of   binary   arithmetic (Smith   2008)    and   symbolic   of   the   Christian   Creationist  
theory   " creatio   ex   nihilo"    or   "creation   out   of   nothing". (Smith   2008   p.   450)  

 

However,   Leibniz,   binary's   self-proclaimed   inventor,   may   have   plagiarized.   He   was   familiar   with  
the   works   of   both    Juan   Caramuel   y   Lobkowitz    and    Thomas   Harriot . (ALLM   2018)    Thomas   Harriot  
demonstrated   representation   by   a   base   2   system (O’Connor   &   Robertson   2019) ,   while   Juan   Caramuel   y  
Lobkowitz   worked   with   a   variety   of   base   values   and   their   logarithms   including   base   2. (O’Connor   &  

Robertson   2010)    Regardless,   Leibniz   vastly   expanded   both   binary   and   formal   logic   through   the  
discovery   of   properties   such   as   "conjunction,   disjunction,   negation,   identity,   inclusion,   and   the  
empty   set". (Lande   2014   p.   21)      As   with   the   present   system   of   binary,   Leibniz's   used     and   ,   as   is  0  1  
displayed   by   Table   4,   below.   This   work   appears   in    Explication   de   l'Arithmétique   Binaire,  
1703. (Strickland   2007)  

2 0  0   0   0   1  
2 1  0   0   1   0  
2 2  0   1   0   0  
2 3  1   0   0   0   

Table   4  

Additionally,   in   1679,   during   his   study   of   binary   arithmetic,   Leibniz   imagined   a   machine   that  
represented   binary   numbers   by   marbles,   governed   by   a   positional   system   of   open   and   closed  
gates   which   the   marbles    gravity. (Lande   2014)    "Modern   electronic   digital   computers   have   replaced  
Leibniz’s   gravity-driven   marbles   with   shift   registers,   voltage   gradients,   and   electron   pulses,   but  
otherwise   they   run   roughly   as   Leibniz   had   visualized" (Agarwal   &   Sen   2014   p28)  
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1.3   :   Popularization   of   Binary   Data   
 

The   first   known   application   of   a   physical   binary   representation   of   data   was   by   Basile   Bouchon   in  
1725. (Heudin   2008)    Bouchon   developed   a   punched   paper   tape   that   allowed   semi-automated   set-up  
of   a   textile   loom. (Heudin   2008)    It   was   not   until   1804,   after   further   developments   by   Jean   Baptiste  
Falcon   in   1728 (Essinger   2004)    and   Jacques   de   Vaucanson   in   1740s (Essinger   2004) ,   that   this   system   saw   its  
first   commercial   success.   The   first   widespread   adoption   of   binary   was   through   the   use   of   the  
Jacquard   Loom. (Essinger   2004)    Its   inventor,   Joseph   Marie   Jacquard,   used   punched   cards   joined   to  
form   a   loop   such   that   individual   portions   of   the   input   length   could   be   edited. (Essinger   2004)    The   term  
"Jacquard"   refers   to   a   modular   control   mechanism   responsible   for   automating   the   weaving   of  
complex   patterns,   rather   than   a   specific   loom   type   or   design. (DMS   2017)    The   Jacquard   loom   was   an  
international   success   and   punch   cards   would   go   on   to   become   an   integral   part   of   industry,  
research,   and   government   data   storage   for   the   next   two   centuries. (Essinger   2004)   

 

These   types   of   physical   mediums,   paper   tapes   and   cards,   theoretically   represent   information   as  
a   sequence   of   positions,   each   position   has   either   been   perforated   or   not. (Essinger   2004)    This   system  
thus   represents   series   of   two-state   devices   and   is   able   to   represent   one   bit   of   information   at  
each   position.   There   is   evidence   of   productions   that   used   input   card   counts   in   the   hundreds   of  
thousands,   including   the   first   digitally   manufactured   book,   with   the   physical   medium   woven   by  
these   looms   rather   than   printed   with   ink. (Norman   2019)    However,   the   most   influential   artifact,  
perhaps,   was   a   portrait   of   Jacquard,   woven   in   silk,   owned   by   Charles   Babbage.    Made   to   order  
in   1839,   these   masterworks   required   24000   punched   cards   and   were   crafted   with   a   precision  
that   Babbage   deeply   admired   “sheet   of   woven   silk,   framed   and   glazed,   but   looking   so   perfectly  
like   an   engraving,   that   it   had   been   mistaken   for   such   by   two   members   of   the   Royal  
Academy”. (Gross.   2015   par.   3)    Regarded   as   a   "father   of   the   computer", (Halacy   1970)    Babbage   is   considered  
to   have   both,   invented   the   first   mechanical   computer, (Copeland   2017)    as   well   as   designed   the   first  
programmable   computer. (Copeland   2017)    The   design   of   this   programmable   computer,   the   Analytic  
Engine,   though   conceived   in   1837,   was   " essentially   the   same   as   that   which   has   dominated  
computer   design   in   the   electronic   era ". (Swad   2019   par.   9)    It   was   Jacquard's   invention   which   inspired  
Babbage   in   using   punch   cards   to   store   the   binary   data   interpreted   by   the   Analytic   Engine. (Gross.  

2015)  

 

Nearly   50   years   later,   punched   hole   binary   representation   was   adopted   by   the   founder   of   the  
Tabulating   Machine   Company,   Herman   Hollerith. (Essinger   2004)    In   the   1880s,   Hollerith   was   inspired  
by   hole-punched   railway   tickets   which   represented   categorical   passenger   data   by   which  
conductors,   "...   verified   that   the   passenger   occupying   the   seat   was   in   fact   the   same   who   had  
originally   presented   the   ticket". (CPRR.org   2014   par.   1)    Hollerith   developed   a   method   of   data   storage   on  
punched   cards,   readable   by   an   automated   mechanical   process. (Da   Cruz   2001)    This   application   was  
revolutionary   as   all   previous   automated   systems   processed   instruction   lists,   such   as   the  
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complex   procedures   which   directed   silk   spinning   Jacquard   looms,   and   not   arbitrary   data   of   the  
sort   Hollerith   had   in   mind.   "After   some   initial   trials   with   paper   tape,   he   [Hollerith]   settled   on  
punched   cards…" (Da   Cruz   2001   par.   2)    An   array   of   spring-loaded   metal   pins   was   positioned   over   a   card  
ready   for   processing.   A   pattern   of   punched   holes   would   allow   a   configuration   of   pins   to   "...pass  
through   the   holes,   making   contact   with   little   wells   of   mercury,   completing   an   electrical   circuit" (Da  

Cruz   2019   par.   1)    that   was   used   to   count   or   sort   punched   cards   as   well   as   ring   a   bell   signaling   a  
human   operator   that   the   current   card   had   been   processed   and   that   the   next   needed   to   be   hand  
fed. (Da   Cruz   2019)  

 

" Herman   Hollerith   was   an   American   inventor   and   entrepreneur   whose   inventions   paved   the   way  
for   the   information   processing   industry " (Satyasikha.   2014     par.   1)    Specifically,   Hollerith's   tabulating  
machine   marks   a   new   beginning,   as   it   was   the   first   information   processing   system   to  
successfully   replace   pen   and   paper. (Da   Cruz   2001)    Hollerith's   electromechanical   tabulators   proved  
their   worth   by   processing   the   data   generated   during   the   1890   United   States   Census   far   faster  
than   the   1880   census.   The   tabulating   machines    reduced   what   had   been   a   ten-year   job   to   three  
months,   ultimately   reducing   1890   taxpayers   costs   by   five   million   dollars. (Da   Cruz   2001)    Hollerith's  
company   would   eventually   become   the   core   of   IBM,   producer   of   the   dominant   mainframe  
computer   family,   the   System/360,   an   industry   standard   for   the   computing   market   during   the  
1960s   and   1970s. (Rosenbaum   1998)     IBM,   "a   direct   descendant   of   the   work   that   went   on   in   Jacquard’s  
workshop", (Essinger   2004   p192-93)     forwarded   the   ubiquity   of   binary   data   representation   and   processing  
in   both   industry   and   government.   While   punched   card   data   storage   is   generally   obsolete,  
reports   show   that   as   recently   as   2012   there   were   still   .02%   of   active   US   voting   machines   using  
this   method   to   record   voter   input   as   opposed   to   the   95%   that   used   electronic   voting   machines  
and   optically   scanned   paper   ballots. (ProCon   2013)  
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1.4   :   The   Definitions   and   Standards   for   Collections  
of   Binary   Data   

 

Bit   collections   are   most   commonly   expressed   via   their   byte   length,   a   unit   coined   by   Werner  
Buchholz   in   1956. (Buchholz   1956)    The   byte   is   defined   to   represent   the   arbitrary   length   of   a   bit  
sequence   used   to   encode   a   single   textual   character. (Buchholz   1962)    Modern   convention   was  
established   by   the   preeminence   of    IBM’s   System   360   computer   line    in   the   1960's   which   utilized  
an   eight   bit   byte. (Swad   2019)    Due   to   variance   in   system   design,   "octet"   explicitly   defines   an   eight   bit  
unit. (Bemer   2000)    Bytes   are   relatively   small   data   collections,   modern   computers   manipulate  
"words". (Buchholz   1962)     "A   word   consists   of   the   number   of   data   bits   transmitted   in   parallel   from   or   to  
memory   in   one   memory   cycle". (Buchholz   1962   p.   40)    Thus,   the   system's   structural   properties   define   its  
word   size. (Buchholz   1962)    Historically,   system   designs   have   had   their   word's   data   length   range   from  
1 (Koblentz   2004)    to   128 (Waterman   &   Asanovi´c   2017)     bits   with   a   majority   of   modern   systems   featuring   lengths   of  
32   or   64. (Buchholz   1962)  

 

Collections   of   significant   magnitude   are   most   commonly   quantified   by   their   decimal   multiples   as  
defined   by   the   International   System   of   Units   (SI)   using   prefixes   appended   to   a   given   unit   of  
measure. (NIST   2019)    The   SI   units   are   the   most   widely   used   system   of   measure   and   the   international  
standard   for   measurement. (NIST   2019)    The   SI   prefixes   are   a   defined   series   of   decimal   multiples   of  
standardized   units   that   includes   the   prefixes   kilo   (10 3 )   through   yotta   (10 24 )   increment   by  
multiples   of   1000   (10 3 ). (NIST   2019)    1000   bytes   would   be   expressed   as   an   SI   unit   if   prefixed   by   k-   as  
kbytes   to   mean     bytes   or   1   kilobyte. (NIST   2019)    The   nature   of   the   SI   system   is   well   suited   to 0  1 3  
count,   by    powers   of   ten ,   those   physical   quantities   for   which   we   have   long   used   a   base   10  
system.   However,   the   logical   quantities   used   in   computing   are   represented   by   a   binary   system  
which   is   inherently   base   2.   Thus,   for   the   purposes   of   computing,   the   SI   prefixes   were  
misappropriated   for   nearby   binary   multiples,   eg   . (McCullagh   2007)    In   the   early   years,   there   was  k = 210  
no   significant   difference   in   using   SI   prefixes   for   either   binary   or   decimal   multiples. (McCullagh   2007) 

  and   ,   for   example,   are   equal   to   two    significant   figures . (McCullagh   2007)    As 024  210 = 1 000  103 = 1  
computational   capacities   increased   the   absolute   error   between   the   two   interpretations   rose  
causing   issues   for   manufacturers   and   consumers   alike.   Ultimately,   disparate   prefix   interpretation  
culminated   in   significant   class   action   lawsuits. (McCullagh   2007)  

 

A   set   of   binary   prefixes   created   to   solve   these   issues   was   standardized   by   the   International  
Electrotechnical   Commission   (IEC).   The   IEC   is   "the   world's   leading   organization   for   the  
preparation   and   publication   of   International   Standards   for   all   electrical,   electronic   and   related  
technologies". (IEC-W   2019   par.   2)    IEC   members   adopt   these   publications   as   national   standards.  
Member   and   affiliate   countries   influenced   by   IEC   standards   compose   "more   than   97%   of   the  
world's   population". (IEC-W   2019   par.   2)    In   1996 (IUCr   1997) ,   the   IEC   formulated   its   prefixes   by   contraction  
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between   the   first   two   letters   of   the   popular   SI   prefixes   and   "bi"   from    binary. (IEC   2005)     This   results   in  
the   prefixes    kibi ,    mebi ,    gibi    and    tebi ,   for   which   the   corresponding   symbols   Ki,   Mi,   Gi   and   Ti   were  
used. (Abrahams   2000)     IEC   employed   the   same   contraction   system   to   define    pebi    (Pi)   and    exbi -    (Ei)   via  
60027-2   Amendment   2   (1999) (IEC   2005)    as   well   as    zebi-   (Zi)   and   yobi-   (Yi)   via   the   third   edition   of  
IEC   60027   in   2005,   thus   ascribing   a   binary   equivalent   to   all   SI   prefixes.      A   juxtaposition   of   the   SI  
and   IEC   Prefixes   for   multiples   of   bits   is   displayed   by   Table   5,   below.  

 

Decimal  Binary  
Value  IS  Value  IEC  

1000  10 3  kilobit  kbit  1024  2 10    kibibit  Kibit  
1000 2  10 6  megabit  Mbit  1024 2  2 20  mebibit  Mibit  
1000 3  10 9  gigabit  Gbit  1024 3  2 30  gibibit  Gibit  
1000 4  10 12  terabit  Tbit  1024 4  2 40  tebibit  Tibit  
1000 5  10 15  petabit  Pbit  1024 5  2 50  pebibit  Pibit  
1000 6  10 18  exabit  Ebit  1024 6  2 60  exbibit  Eibit  
1000 7  10 21  zettabit  Zbit  1024 7  2 70  zebibit  Zibit  
1000 8  10 24  yottabit  Ybit  1024 8  2 80  yobibit  Yibit  

 

Table   5  

The   United   States    National   Institute   of   Standards   and   Technology    (NIST)   supports   the   ISO/IEC  
"Prefixes   for   binary   multiples"   standards   and   hosts   a   website   documenting   their   usage. (TMNT   1998)  
NIST   recommends   "in   English,   the   first   syllable   of   the   name   of   the   binary-multiple   prefix   should  
be   pronounced   in   the   same   way   as   the   first   syllable   of   the   name   of   the   corresponding   SI   prefix,  
and   that   the   second   syllable   should   be   pronounced   as   "bee"." (TMNT   1998   par.   2)    NIST   has  
determined   that   SI   prefixes   "refer   strictly   to   powers   of   10"   and   "should   not   be   used   to   indicate  
powers   of   2". (Thompson   &   Taylor   2008    p.   74)    In   summary,   the   symbol   for   the   binary   digit   is   either    bit    per  
recommendation   by   IEC   60027   and   its   successors,   or   the   lowercase    b    symbol   recommended   by  
the   IEEE   1541-2002. (IEEE   2009)    Both   standards   recommend   the   use    of   ( o )   for   octet   and   (B)   for  
byte .   A   direct   comparison   of   the   SI   and   IEC   Prefixes   for   multiples   of   bits   is   displayed   by   Table   6,  
below.  
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IEC   prefix  Representations  Customary   prefix  
Name  Symbol  Base  

2  
Base  
1024  

Value  Base   10  Name  Symbol  

kibi  Ki  2 10  1024 1  1024  =   1.024×10 3  kilo  k   or   K  

mebi  Mi  2 20  1024 2  1048576  ≈   1.049×10 6  mega  M  

gibi  Gi  2 30  1024 3  1073741824  ≈   1.074×10 9  giga  G  

tebi  Ti  2 40  1024 4  1099511627776  ≈   1.100×10 12  tera  T  

pebi  Pi  2 50  1024 5  1125899906842624  ≈   1.126×10 15  peta  P  

exbi  Ei  2 60  1024 6  1152921504606846976  ≈   1.153×10 18  exa  E  

zebi  Zi  2 70  1024 7  1180591620717411303424  ≈   1.181×10 21  zetta  Z  

yobi  Yi  2 80  1024 8  1208925819614629174706176  ≈   1.209×10 24  yotta  Y  

 

Table   6   
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1.5   :   Modern   Data   and   Its   Security  
 

Less   than   1%   of   the   worlds   storage   capacity   was   digital   in   1986,   this   grew   to   94%   by  
2007. (Leontiou   2011)    The   year   2002   was   when   humanity   utilized   a   greater   margin   of   digital   storage,  
an   event   considered   to   reflect   our   transition   into   the   digital   age. (Leontiou   2011)    Every   communication  
device   uses   the   propagation   of   a   signal   to   convey   the   information   necessitated   by   its  
function. (Samson   1999)    The   term   s ignal   abstractly   references   "any   kind   of   physical   quantity   that  
conveys   information" (Kuphaldt   2001   (1)   par.   2)     .   Examples   of   signals   include   the   varying    voltage ,    current ,  
and    electromagnetic   wave s   used   in   modern   digital   technology. (Kuphaldt   2001)    There   are   two   types   of  
signals,   digital   and   analog. (Kuphaldt   2001)    While   both   signals   propagate   through   the   same   mediums,  
it   is   their   interpretation   that   differs. (Kuphaldt   2001)    A   device   that   interprets   analog   signals   does   so   as   a  
real   number   in   a   range   of   continuous   values. (Kuphaldt   2001)   

 

Conversely,   digital   devices   interpret   a   sequence   of   discrete   values   from   bands   of   signal  
level. (Samson   1999)    All   signal   values   within   a   band   represent   one   of   a   set   of   predetermined  
information   states. (Samson   1999)    "...one   of   the   first   electronic   digital   computers,   the   Eniac.   The  
designers   of   the   Eniac   chose   to   represent   numbers   in   decimal   form,   digitally…   …This   approach  
turned   out   to   be   counter-productive,   and   virtually   all   digital   computers   since   then   have   been  
purely   binary   in   design." (Kuphaldt   2001   (2)   par.   4)    A   binary   signal   is   a   digital   signal   capable   of   only   two  
values,    derived   from   the   separation   of   the   continuous   signal   range   into   discrete   bands,   a  
process   generally   known   as   discretization. (Samson   1999)    These   values   correspond   to   binary     or   ,  1  0  
and   a   signal   is   then   modulated,   falling   into   either   one   of   the   discrete   bands,   to   represent   the  
value   of   a   bit. (Samson   1999)    A   diagrammatic   representation   of   binary   signal   discretization   is   shown  
by   Figure   2,   below.   

 

 

Figure   2  
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Inherent   in   any   sort   of   signal   propagation   is   the   risk   of   inaccurate   data   transfer   due   to   system  
noise.   System   noise   is   signal   interference,   this   interference   manifests   as   changes   in   the  
interpretation   of   signal   level. (Kuphaldt   2001   (3)   )    W hile   noise   always   degrades   the   quality   of   an   analog  
signal,   b ecause   of   the   high   discretization   associated   with   a   binary   signal,   noise   of   reasonable  
amplitude   does   not   leave   its   intended   signal   band,   and   has   no   effect   on   the   signal   value  
interpreted. (Kuphaldt   2001   (3)   )  

 

Transmission   of   a   data   signal,   the   communication   of   information   from   one   location   to   another,  
requires   a   communication   "channel".   The   term   channel   is   a   generalization   for   some   arbitrary  
signal   pathway   or   medium   of   transmission. (Stallings   2007)    Transmission   is   of   two   types,   guided  
transmission   via   physical   mediums   (i.e.   twisted-pair   wire,   cable,   and   fiber-optic   cable)   and  
unguided   transmission   via   broadcast   mediums   (i.e.   microwave,   satellite,   radio,   and  
infrared). (Stallings   2007)    Our   digital   information   travels   across   vast   networks   owned   by   various  
corporations,   is   hosted   by   countries   around   the   world,   stored   on   complex   devices   accessed   by  
an   indefinite   number   of   users,   and   will   persist   long   after   we   ourselves   have   gone.   Vast  
resources   are   required   to   create   a   secure   communication   channel   as   the   entire   span   would  
require   constant   physical   protection. (Van   Tilborg   &   Jajodia   2011)    Thus,   the   majority   of   modern  
communication   and   exchange   of   private   data,   is   over   an   insecure   channel.   A   need   for   secure  
communication   indicates   the   existence   of   an   unwanted   presence,   called   an   adversary   or  
attacker. (Van   Tilborg   &   Jajodia   2011)    Such   presence   is   classified   as   either   a   passive   attacker,   such   as   an  
eavesdropper,   or   an   active   attacker,   such   as   a   cryptanalyst. (Van   Tilborg   &   Jajodia   2011)  

 

These   adversaries   perform   actions,   such   as   eavesdropping,   defined   as   "the   surreptitious  
monitoring   of   communication". (Van   Tilborg   &   Jajodia   2011   p.   378)    To   defeat   adversaries,   such   as  
eavesdroppers,   a   signal's   sender   may   apply   countermeasures   to   protect   the   contents   of  
communication.   The   most   common   countermeasures   come   from   the   field   of   Cryptology. (Van   Tilborg   &  

Jajodia   2011)    "Cryptology   is   the   discipline   of   cryptography   and   cryptanalysis   and   of   their  
interaction". (Van   Tilborg   &   Jajodia   2011   p.   283)    The   field   of   modern   cryptologic   application   consists   of   the  
study   and   practical   application   of   systems   which   overcome   adversaries   seeking   to   compromise  
secure   communication. (Menezes   Van   Oorshot   &   Vanstone   1997)    The   necessity   of   cryptography   arises   when   the  
security   of   information   is   required   until   authorized   retrieval.   This   includes   communications  
between   individuals   separated   by   space   and   storage   between   instances   in   time. (Van   Tilborg   &   Jajodia  

2011)   

 

Suppose   Alice   and   Bob   wish   to   share   information.   For   this   they   can   rely   on   secure  
communication   via   cryptographic   protocol,   a   distributed   algorithm   describing   a   procedure   of  
exchange   for   two   or   more   parties   that   achieves   certain   security   objectives. (Van   Tilborg   &   Jajodia   2011)  
Interaction   via   cryptographic   protocol   is   done   through   the   exchange   of   data   messages. (Van   Tilborg   &  

Jajodia   2011)    We   will   use   the   term   message   as   a   general   identifier   for   information   to   be   transmitted.  
Bank   statements,   medical   test   results,   and   intimate   letters   are   among   the   messages   Alice   and  
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Bob   might   share   privately.   In   the   most   basic   case,   an   encryption   operation   performed   by   the  
sender,   and   a   decryption   operation   performed   by   the   receiver   is   necessary   for   message  
confidentiality. (Van   Tilborg   &   Jajodia   2011)    Cryptographically,   decryption   is   the   inverse   of   encryption. (Van   Tilborg  

&   Jajodia   2011)    Alice   encrypts   a   private   message   ,   using   an   encryption   algorithm   ,   yielding   the m ( )  E  
ciphertext   ,   . (Van   Tilborg   &   Jajodia   2011)    Bob   receives   the   ciphertext,   supplies   it   to   a c (m)  E = c  
corresponding   decryption   algorithm   ,   and   restores   the   message   ,   ,   also   known ( )  D m (c) m  D =   
as   the   plaintext. (Van   Tilborg   &   Jajodia   2011)    The   advantage   of   this   complexity   can   be   seen   in   the   modern  
applications   of   cryptography,   the   object   of   which   is   secure   information   transfer   and   storage.  
When   using   a   well   designed   and   properly   implemented   cryptographic   algorithm,   an   intercepted  
ciphertext   will   contain   no   information   to   differentiate   the   contents   of   that   ciphertext   from   truly  
random   bits. (Van   Tilborg   &   Jajodia   2011)  
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Section   2   :   Modernization   of   Cryptography  

2.1   :   The   End   of   Security   by   Obscurity  
 
Cryptography   was   first   applied   by   the   Egyptians   around   4000   years   ago. (Menezes   Van   Oorshot   &   Vanstone  

1997)    As   they   developed,   cryptographic   methods   were   implemented   to   ensure   secrecy   of   critical  
communications.   Its   predominant   practitioners   were   associated   with   government   in   general,  
whether   military   or   diplomatic,   e.g.   spies,   diplomats,   military   officers,   and   heads   of   state. (Menezes  

Van   Oorshot   &   Vanstone   1997)    Prior   to   the   modern   age,   Cryptographic   application   primarily   consisted   of  
encryption.   Encryption   is   a   process   that   provides   message   confidentiality. (Paar   &   Pelzi   2009)    The  
confidentiality   of   a   message   is   generally   achieved   by   mechanisms   which   preclude   access   to  
information. (Paar   &   Pelzi   2009)    Encryption   is   a   method   of   message   conversion   capable   of   transforming  
information   from   a   comprehensible   form   into   an   incomprehensible   one,   and   back,   when  
necessary. (Van   Tilborg   &   Jajodia   2011)    These   techniques   encode   messages   in   such   a   way   that   only   parties  
with   secret   knowledge   are   allowed   access.   

In   security   engineering,   a   dependance   on   secrecy   of   design   or   implementation   as   the   primary  
security   mechanism   is   known   as   security   through,   or   by,   obscurity. (Paar   &   Pelzi   2009)    The   first   security  
expert   to   bring   the   faults   of   this   methodology   to   public   attention   was   locksmith   Alfred   Charles  
Hobbs.   In   an   1851   demonstration,   Hobbs   displayed   how   even   the   most   advanced   locks   were  
defeated   by   common   criminals.   The   public   reaction   assumed   that   exposing   such   design   faults  
would   make   these   systems   more   susceptible   to   attack.   Hobbs   replied   "Rogues   are   very   keen   in  
their   profession,   and   know   already   much   more   than   we   can   teach   them". (Stross   2006   par.   25)    Today,  
security   by   obscurity   as   a   system's   only   security   mechanism   is   discouraged   by   standards  
bodies.   The   United   States   National   Institute   of   Standards   and   Technology   (NIST)   states,  
"System   security   should   not   depend   on   the   secrecy   of   the   implementation   or   its  
components." (Scarfone   Jansen   Tracy   2008   p.   2-4)   

The   practices   of   security   by   obscurity   oppose   the   modern   practices   of   security   by   design  
principles   and   open   design. (Stallings   2017)    A   practical   example   of   the   success   of   these   latter   two  
methodologies   is   the   open   source   operating   system   Linux.   Linux,   arguably   the   most   famous  
example   of   open-source   software,   has   never   had   the   opportunity   to   use   secrecy   as   a   source   of  
security. (Germain   2016)     Moreover,   the   fact   that   the   Linux   source   code   is   widely   available   improves  
the   odds   that   any   flaws   will   be   found   sooner   and   solved   more   efficiently,   a   phenomenon   known  
as   Linus's   Law. (Raymond   2000)    Today,   Linux   is   hardy,   secure,   and   robust,   with   " the    largest    installed  
base   of   all   general-purpose   operating   systems". (Germain   2016    par.   5 )    In   contrast,   keeping   the  
specification   of   a   widely   used   method   classified   is   a   near   impossibility.   Individual   adversaries  
might   bribe,   blackmail,   or   physically   threaten   users   into   explaining   system   details.   Organizations  
often   experience   compromise   due   to   internal   threats   and   it   is   in   the   interest   of   world   powers   to  
seize   enemy   equipment,   capture   prisoners,   and   gather   information   through   vast   intelligence  
networks.  
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2.2   :   The   Key   to   Cryptography  
 

During   the   early   history   of   cryptography,   as   the   secret   mechanisms   of   cryptographic   systems  
became   known,   and   security   by   obscurity   was   invalidated,   new   systems   would   come   to   rely  
upon   a   variable   cryptographic   key.   Cryptographic   keys   are   of   incredible   importance   to   the  
cryptographic   transformations   that   use   them.   Without   the   use   of   a   variable   cryptographic   keys  
these   algorithms   can   be   trivially   compromised.    Cryptographic   keys,   typically   manifest   as   unique  
bitstrings,   are   input   parameters   said   to   specify   cryptographic   transformation. (Van   Tilborg   &   Jajodia   2011)  
All   the   operations   involved   in   modern   cryptographic   message   transformations   are   carried   out   in  
accordance   with   some   algorithmic   mechanism.   This   mechanism   is   parameterized   by   a   secret  
key,   which   dictates   the   transformations   to   be   enacted   upon   any   plaintext   message.   Using   a  
unique   secret   key   for   each   execution   of   a   cryptographic   algorithm   allows   all   plaintext   values,  
even   when   initially   identical,   to   undergo   a   unique   set   of   transformations. (Gergersen   2017)    Without   a  
variable   key,   cryptographic   methods   proceed   through   an   unchanging   set   of   transformations   to  
produce   identical   output   ciphertext   for   identical   input   plaintext,   known   as   deterministic  
execution. (Van   Tilborg   &   Jajodia   2011)    To   invert   such   a   transformation,   adversaries   only   need   knowledge   of  
the   algorithm   used   as   it's   execution   would   be   deterministic,   each   transformation   identical,   and  
inversion   straightforward. (Van   Tilborg   &   Jajodia   2011)     When   a   variable   key   is   incorporated,   a   unique   set   of  
steps   produces   unique   output   based   upon   the   key   value.   Thus,   cryptographic   keys   are   input  
parameters   which   determine   the   output   of   cryptographic   algorithms.   In   the   discussion   that  
follows,   we   shall   see   that   cryptographic   keys,   as   miniscule   bit   sequences,   are   not   only   far   more  
easily   concealed   than   the   entirety   of   a   cryptographic   algorithm,   but   are   simple   to   change   once  
compromised.   Modern   examples   include   the   PIN   of   a   bank   account,   the   code   to   an   electronic  
gate,   the   sequence   of   a   combination   lock,   the   password   associated   with   a   username.  

 

In   1883,   Auguste   Kerckhoffs   wrote   two   famous   articles   summarizing   six   contemporary   principles  
for   the   design   of   cryptographic   systems.   What   follows   is   an   approximate   English   version:    (Fabien  

Petitcolas   1997   par.   3)   

● The   system   must   be   substantially,   if   not   mathematically,   undecipherable;  

● The   system   must   not   require   secrecy   and   can   be   stolen   by   the   enemy   without   causing  
trouble;  

● It   must   be   easy   to   communicate   and   retain   the   key   without   the   aid   of   written   notes,   it  
must   also   be   easy   to   change   or   modify   the   key   at   the   discretion   of   the   correspondents;  

● The   system   ought   to   be   compatible   with   telegraph   communication;  

● The   system   must   be   portable,   and   its   use   must   not   require   more   than   one   person;  

● Finally,   given   the   circumstances   in   which   such   system   is   applied,   it   must   be   easy   to   use  
and   must   neither   stress   the   mind   or   require   the   knowledge   of   a   long   series   of   rules.  
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While   these   principles   are   no   longer   of   complete   relevance   given   contemporary   computational  
capability,   the   second   statement   is   still   a   fundamental   concept   known   to   cryptographers   as  
Kerckhoffs's   principle. (Van   Tilborg   &   Jajodia   2011)    Kerckhoffs's   principle   can   be   generally   understood   to  
mean,   a   system   should   remain   secure   when   every   detail   but   the   cryptographic   key   is   public  
knowledge.   

 

As   all   advancement   in   the   field,   this   principle   has   been   independently   confirmed   by   other  
experts.   Examples   of   such   occurrences   include   Shannon's   Maxim   "the   enemy   knows   the  
system", (Van   Tilborg   &   Jajodia   2011   p.   675)     i.e.,   system   design   should   hold   the   assumption   that   adversaries  
have   full   knowledge   of   a   system's   operation.   Bruce   Schneier   uses   Kerckhoff's   principle   to  
support   the   belief   that   all   security   systems   must   be   designed   with   sufficient   fault   tolerance   such  
that   disclosure   of   system   details   does   not   prevent   useability.   "Kerckhoffs's   principle   applies  
beyond   codes   and   ciphers   to   security   systems   in   general:   every   secret   creates   a   potential  
failure   point.   Secrecy,   in   other   words,   is   a   prime   cause   of   brittleness—and   therefore   something  
likely   to   make   a   system   prone   to   catastrophic   collapse.   Conversely,   openness   provides  
ductility." (Mann   2002   par.   47)  

 

Any   cryptographic   security   system   crucially   depends   on   secrets   or   it's   cryptographic   operations  
would   be   straightforward   to   reverse. (Van   Tilborg   &   Jajodia   2011)    Modern   cryptographic   applications   may   be  
implemented   by   hardware   or   software.   If   the   security   of   any   application   depends   entirely   on  
implementation   secrecy,   a   compromise   of   that   secrecy   cannot   be   recovered.   A   compromised  
cryptographic   system   is   useless   and   requires   an   entirely   new   implementation.   The   time   scale   of  
such   a   process   is   immense;   design,   implementation,   verification,   distribution,   and   maintenance  
of   a   system,   unique   from   the   previous   implementation,   is   required   to   thwart   attackers.  
Conversely,   disclosure   of   cryptographic   keys   necessitates   automatic   key   generation   to   replace.  
This   is   the   essence   of   Kerckhoffs's   principle,   the   secrets   maintained   by   a   security   system   must  
be   those   least   difficult   to   replace   when   compromised.  
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2.3   :   Cryptographic   Primitives  
 

Cryptologic   research   is   supported   by   the   fields   of   mathematics,   computer   science,   electrical  
engineering,   communication   science,   information   science,   and   physics. (Ahmed   Al-Vahed   2011)(Van   Tilborg   &  

Jajodia   2011)    Cryptographic   application   supports   the   safe   use   of   the   most   advanced   and   vital   modern  
technologies   including   chip-based   EMV   smart   payment   cards,   digital   currencies,   e-commerce,  
user   authentication,   secure   data   storage,   secure   network   connections,   and   remains   the   leading  
approach   to   maintain   classified   military   and   government   intelligence.    (Ahmed   Al-Vahed   2011)(Van   Tilborg   &  

Jajodia   2011)    Cryptographic   applications   are   primarily   expressed   as   branches   of   engineering.    (Ahmed  

Al-Vahed   2011)     Most   typically,   engineering   applications   contend   with   the   passive,   neutral   forces   of  
nature. (Ahmed   Al-Vahed   2011)     The   fields   of   cryptography   and   security   engineering   deal   with   the   active,  
malevolent   opposition   of   adversaries   and   attackers. (Ahmed   Al-Vahed   2011)   

 

In   recent   decades,   the   field   has   expanded   beyond   preservation   of   confidentiality.   Modern  
cryptologic   methods   include   techniques   for   data   confidentiality,   integrity   preservation,  
authentication,   identification,   and   access   control,   non-repudiation,   interactive   proofs,   and   secure  
computation   in   general. (Menezes   Van   Oorshot   &   Vanstone   1997)    Each   of   these   objectives   are   achieved  
individually   by   the   proper   cryptographic   primitives.   

 

A   cryptographic   primitive   is   a   function   that   performs   a   fundamental   cryptographic   operation.  
Such   functions   are   manifest   as   computer   algorithms.   Cryptographic   primitives   compose   the  
basic   building   blocks   of   modern   cryptographic   systems.   As   fundamental   components,  
cryptographic   primitives   are   the   foundation   upon   which   security   tools   of   greater   complexity  
depend.   

 

Example   Cryptographic   Primitives (Van   Tilborg   &   Jajodia   2011)  

 

Symmetric   key  
provides   message   confidentiality   using   a   single   key   for   encryption   and  
decryption.  

Public   key  
provides   message   confidentiality   using   a   key   pair,   a   public   encryption   key   and  
a   private   decryption   key.  

One-way   hash  
functions  

provides   message   integrity   by   computing   a   unique   hash   value.   

 

A   general   taxonomy   of   cryptographic   primitives   is   given   by   Figure   3   below.  
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Figure   3  

 

Each   primitive   must   be   profoundly   reliable,   performing   in   exact   accordance   to   their   specification.  
Due   to   this   critical   necessity,   a   significant   amount   of   cryptologic   research   concerns   the   design  
and   function   of   cryptographic   primitives.   Creation   of   cryptographic   primitives   is   a   complicated  
process;   design,   development,   and   verification   to   establish   dependability   takes   considerable  
time.   Among   the   reasons   are   Insufficient   experience   anticipating   the   theoretical   and   practical  
considerations   involved,   time   consuming   and   error   prone   design   processes,   even   for   content  
experts,   as   well   as   the   fact   that   completed   algorithms   require   thorough,   rigorous   testing   by   the  
cryptological   community. (Lafourcade   2013)  
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Successfully   withstanding   third   party   review   gives   some   confidence   that   an   algorithm   is   indeed  
secure   enough   for   practical   use. (Lafourcade   2013)    Currently,   extensive   public   review   and   cryptanalysis  
are   currently   the   only   method   by   which   we   can   achieve   a   sufficient   level   of   confidence,  
exhaustive   proofs   of   security   for   an   entire   system   are   generally   not   feasible. (Lafourcade   2013)    As   such,  
it   is   highly   insecure   and   resource   inefficient   to   implement   our   own   cryptographic   primitives.  
"Several   cryptographic   primitives   thought   to   be   proven   secure   by   their   authors   have   been  
broken   several   years   later,   due   to   errors   in   the   original   proofs". (Lafourcade   2013   p.   7)    This   is   of   critical  
importance   to   security   as   any   cryptographic   system   or   protocol   found   to   include   a   faulty  
cryptographic   primitive   would   be,   consequently,   susceptible   to   attack.   

 

Cryptographic   system   designers   rely   on   publicly   reviewed   primitives,   designed   to   precisely  
execute   a   single,   specialized   cryptographic   operation.   Cryptographic   primitives   are   quite   limited  
as   each   exactly   defines   one   specific   function.   One   or   more   cryptographic   primitives   are   linked   to  
develop   processes   of   greater   utility   and   complexity,   known   collectively   as   a   cryptographic  
system,   or    cryptosystem . (Van   Tilborg   &   Jajodia   2011)    Cryptosystem   structure   often   involves   exchange   of  
secure   messages. (Van   Tilborg   &   Jajodia   2011)    Such   cryptosystems   are   called   cryptographic   protocols   as  
they   define   a   method   of   exchange   between   two   or   more   entities   which   fulfill   a   specified   security  
objective. (Van   Tilborg   &   Jajodia   2011)    While   cryptographic   primitives   and   protocols   both   define   methods   of  
satisfying   a   security   objective,   primitives   describe   actions   taken   by   one   entity,   whereas   protocols  
describe   the   exchange   between   multiple. (Kotzanikolaou   &   Douligeris   2006)       An   example   of   a   relevant  
cryptographic   protocol   is   Transport   Layer   Security   (TLS),   a   cryptographic   protocol   used   to  
secure   web   (HTTPS)   connections. (Van   Tilborg   &   Jajodia   2011)     Cryptographic   protocols   are   used   as  
cryptographic   system   components.   In   general,   a   cryptographic   system   consists   of   multiple  
cryptographic   primitives   and/or   cryptographic   protocols. (Van   Tilborg   &   Jajodia   2011)    In   its   entirety,   a  
cryptosystem   is   a   relationship   consisting   of   an   encryption   method,   a   decryption   method,   and   a  
well-defined   sets   of   related   plaintexts,   ciphertexts,   and   cryptographic   keys. (Van   Tilborg   &   Jajodia   2011)  

 

Cryptosystems   provide   advanced   functionality   to   guarantee   the   complex   security   assurances  
necessitated   by   modern   security   requirements.    (Van   Tilborg   &   Jajodia   2011)    Only   when   combined   within   a  
well-defined   security   system,   can   we   achieve   more   than   a   single,   simultaneous   security  
requirement. (Van   Tilborg   &   Jajodia   2011)    Cryptographic   systems,   when   constructed   from   well   audited  
primitives,   are   able   to   assure   many   high-level   security   objectives   in   concurrency. (Van   Tilborg   &   Jajodia  

2011)    These   systems   are   only   as   secure   as   the   cryptographic   primitives   which   underlie   them. (Van  

Tilborg   &   Jajodia   2011)    Due   to   the   vast   complexity   of   modern   cryptosystems,   this   paper   focuses   on   the  
context,   mathematical   properties   and   implementation   of   a   single   cryptographic   system.  
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2.4   :   The   One   Time   Pad  
 

The   first   cryptographic   function   proven   secure   through   the   application   of   Information   Theory   was  
the   One-Time   Pad   (OTP). (Shannon   1949)    The   OTP   system   input    requires   a   message   of   arbitrary  
length   and   a   key   of   equal   or   greater   length,   a   transformation   is   then   performed   as   each   plaintext  
unit   is   combined   with   the   key   unit   of   corresponding   location   to   produce   the   ciphertext   unit. (Shannon  

1949)    First   devised   by   Frank   Miller   for   use   with   telegraph   communications   in   1882, (Bellovin   2011)    this  
system   was   individually   redeveloped   in   1917   by   Gilbert   S.   Vernam.   On   July   22,   1919,   Vernam  
was   issued   U.S.   Patent   1,310,719   for   the   "Secret   Signaling   System". (Vernam   1919)    Now   known   as  
the   Vernam   cipher,   this   method   specifies   use   of   the   XOR   operation   to   encrypt   a   one-time  
pad. (Vernam   1919)    The   US   National   Security   Agency   (NSA)   considers   this   patent   "perhaps   one   of   the  
most   important   in   the   history   of   cryptography". (Klein   2003   p.   3)    However,   in   this   original   form,   the  
system   was   insecure.   Cipher   operation   combines   plaintext   units   of   a   given   location   with   key  
material   units   at   the   same   location   read   from   a   punched   tape.   This   key   material   tape   was  
initially   designed   as   a   loop   that   was   reused   whenever   it's   end   was   reached.   Joseph   Mauborgne,  
a   US   Major   General   and   the   Army's   12th   Chief   Signal   Officer,   in   command   of   the   Signal   Corps,  
would   work   with   Vernam   to   introduce   the   final   "one-time"   system   with   a   key   that   was   both   totally  
random   and   at   least   as   long   as   the   plaintext. (Kahn   1996)  

 

How   does   the   system   function?   We   first   suppose   Alice   wishes   to   send   a   message   to   Bob.   To  
use   the   OTP,   Alice   must   choose   a   key,   typically   from   some   collection   of   previously   generated  
one   time   pads.   Bob   must   know   which   key   she   selects,   a   process   formally   called   key  
establishment,   we   will   address   this   later   in   the   document.   Second,   each   unit   from   the   pad   must  
be   combined   with   the   plaintext   unit   of   the   same   position   to   produce   the   ciphertext   unit   at   that  
given   position.   The   message   units   in   this   example   will   be   letters   of   the   english   alphabet.   The  
combination   technique   selected   for   this   demonstration   assigns   each   letter   a   numerical   value,  
e.g.,   "A"   is   1,   "B"   is   2,   and   so   on   until   "Z"   is   26.   The   numerical   values   of   message   and   key   letters  
of   equal   position   are   added   together,   such   that   the   first   plaintext   unit   with   the   first   key   unit  
through   until   the   last   plaintext   and   key   unit   are   individually   combined.   As   there   are   only   26  
letters   of   the   alphabet   any   result   over   26   has   26   subtracted   from   it,   the   inverse   operation,   to  
produce   a   valid   result.   This   way,   if   combination   values   go   past   the   end   of   our   alphabet,   the  
sequence   returns   to   A.   This   system   is   displayed   by   Table   7,   below.  

 

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  A  ...  

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  1  ...  

Table   7  
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The   resulting   numerical   value   of   the   combination   of   a   plaintext   unit   and   key   unit   at   a   given  
position   then   corresponds   to   the   output   value   the   ciphertext   digit   at   the   same   position.   If   the  
selected   pad   contains   the   key   material   "WPKLM",   encryption   of   the   message   "HELLO"  
proceeds   as   shown   by   Figure   4,   below.  

 

HELLO →   message  

  8(H)   5(E)12(L)12(L)15(O) plaintext  

+    23(W)16(P)11(K)12(L)13(M) key  

=    31     21     23     24     28 message   +   key  

     5(E)21(U)23(W)24(X)   2(B) ciphertext  

EUWXB →   message   sent  

Figure   4  

 

Alice   is   now   able   to   send   the   secure   message   "EUWXB"   to   Bob.   This   ciphertext   could   be   stored  
until   later   or   be   decrypted   when   received.   Now   suppossing   Bob   wishes   to   decrypt   Alice's  
message,   he   must   select   the   same   one   time   pad   as   was   input   by   Alice.   Once   this   is   known,   Bob  
uses   the   matching   key   and   the   inverse   combination   process.   To   obtain   the   plaintext,   the   key   is  
subtracted   from   the   ciphertext   and,   if   the   resulting   plaintext   value   is   not   positive,   26   is   then  
added   to   produce   the   correct   plaintext   value.   With   proper   application,   Bob   successfully   recovers  
Alice's   plaintext,   the   message   reads   "HELLO",   shown   by   Figure   5,   below.  

 

EUWXB   →   message   received  

     5(E)21(U)23(W)24(X)   2(B) ciphertext  

+    23(W)16(P)11(K)12(L)13(M) key  

=   -18      5     12     12    -11 ciphertext   –   key  

     8(H)   5(E)12(L)12(L)15(O) plaintext  

HELLO   →   message  

Figure   5  
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2.5   :   Perfect   Secrecy  
 

The   utility   of   this   system   becomes   evident   when   we   attempt   to   assess   its   security   from   an  
adversarial   perspective.   Suppose   an   eavesdropper,   Eve   obtains   the   previous   message,  
"DTVWA".   Given   time   significant   time,   Eve   will   surly   discover   key   "WPKLM"   produces   plaintext  
"HELLO",   however,   the   key   "RSBRI"   would   also   be   found   to   produce   plaintext   "LATER",   as  
shown   by   Figure   6,   below.  

 

DTVWA →   message  

     4(D)20(T)22(V)23(W)   1(A) ciphertext  

−    18(R)19(S)   2(B)18(R)   9(I) possible   key  

=   −14      1     20      5     -8 ciphertext   -   key  

=    12(L)   1(A)20(T)   5(E)18(R) possible   plaintext  

LATER   →   possible   message  

Figure   6  

 

As   each   plaintext   unit   is   combined   with   an   individual,   random   key   unit,   the   result   of   each  
combination   operation   is   also   independent.   With   sufficiently   random   key   material,   there   is   no  
information   in   the   individual   characters   or   whole   of   the   ciphertext   that   will   allow   Eve   to   choose  
between   all   possible   ciphertexts.   Any   message   with   the   same   number   of   characters   is   possible  
decryption   output.   Though   many   security   practitioners   intuitively   understood   this   characteristic  
of   the   one   time   pad,   it   would   not   be   until   the   1940's   that   the   mechanism   by   which   the   one-time  
pad   achieves   its   security   was   mathematically   proven. (Shannon   1949)   

 

Claude   E.   Shannon,   known   as   "the   father   of   the   information   age" (GBCGMV   2002   p.   10)    and   for  
developing   the   study   of   information   theory, (GBCGMV   2002)     was   the   first   to   provide   a   mathematical  
definition   for   the   function   of   cryptographic   operations   with   "perfect   security". (Shannon   1949   p.   659)  
While   working   for   Bell   Telephone   Labs,   Shannon   published   a   classified   memorandum   in   1945,  
"A   Mathematical   Theory   of   Cryptography".   The    Bell   System   Technical   Journal    published   a  
declassified   version   in   1949,   "Communication   Theory   of   Secrecy   Systems". (Shannon   1949)    Many  
experts   credit   this   article   as   the   advent   of   modern,   mathematically   validated   cryptography. (GBCGMV  

2002)   
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Shannon   was   inspired   during   World   War   II   to   address   "[t]he   problems   of   cryptography...   ...  
secrecy   systems   furnish   an   interesting   application   of   communication   theory". (Shannon   1949   p.   1)  
Shannon's   observations   concerning   communication   theory   and   cryptography   developed  
concurrently,   that   "they   were   so   close   together   you   couldn’t   separate   them". (Kahn   1996   p   439)  
Shannon   identified   secrecy   systems   of   two   fundamental   types. (Shannon   1949)    One   category   included  
those   systems   designed   to   protect   against   adversaries   with   theoretically   infinite   resources,   time,  
cryptanalysts,   and,   computational   power,   to   reverse   cryptographic   operations. (Shannon   1949)    This  
category   Shannon   called   theoretical   secrecy,   now   defined   as   unconditional   security. (Shannon  

1949) (Van   Tilborg   &   Jajodia   2011)    The   other   category   is   composed   of   systems   designed   to   protect   against  
adversaries   with   finite   resources,   what   Shannon   called   practical   secrecy,   is   now   defined   as  
computational   security. (Shannon   1949) (Van   Tilborg   &   Jajodia   2011)  

 

Most   of   Shannon's   work   focused   around   theoretical   secrecy   as   it   was   he   who   proposed   the  
definition   of   a   cipher   with   information   theoretic   or   "perfect   security". (Shannon   1949   p.659) After  
Shannon,   If   a   cipher   was   information   theoretic   it   was   determined   to   be   "unbreakable",   an  
invaluable   quality   to   be   sure. (Reuvers   &   Simons   2013   par   1)    Shannon   determined   that   an   encryption  
operation   has   perfect   secrecy   if   the   probability   that   encryption   algorithm   ,   when ()  E  
parameterized   with   message     and   key   ,   produces   a   given   ciphertext     is   equal   to   the m1 k c  
probability   that   encryption   algorithm   ,   when   parameterized   with   any   other   message     and ()  E m2  

,   produces   . k c  

 

[E(m , k) c] P [E(m , k) c]  P 1  =  =  2  =   

 

Thus   perfect   secrecy   means   any   two   messages   are   equally   as   likely   to   correspond   to   given   a  
ciphertext. (Shannon   1949)    This   is   because,   if    E    is   a   perfectly   secure   encryption   function,   for   any   fixed  
message    m ,   there   must   be,   for   each   ciphertext    c ,   at   least   one   key    k    such   that   .   If  E(m, k)  c =    
this   is   true,   an   eavesdropper   or   other   adversary   can   recover   no   information   about   the   underlying  
plaintext   once   the   transformation   has   been   made,   as   all   inverse   transformations   are   equally  
likely   options. (Shannon   1949)  
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2.6   :   Key   Issues   With   The   One   Time   Pad  
 

It   has   been   claimed   that   information   theorist   Vladimir   Kotelnikov   had   independently   proven  
perfect   security   in   the   Sovite   Union. (Holden   2017)    His   results,   rumored   to   have   been   the   subject   of   a  
1941   report   which   remains   classified. (Holden   2017)    Shannon   first   delivered   his   results   in   1945,  
publishing   them   in   1949. (Shannon   1949)    Since   Shannons   time,   one   time   pad   ciphers   have   been   used  
to   secure   critical   communications,   but   issues   inherent   to   their   operation   make   these   systems  
cumbersome. (Paar   &   Pelzi   2009)    Use   of   the   system   requires   assumptions   that   we   will   explore   in   more  
depth   now.  

 

As   a   result   of   Claude   Shannon's   revolutionary   observations,   it   was   proven   that   perfect   secrecy  
is   attainable   using   keys   the   same   requirements   as   OTP   keys. (Shannon   1949)    This   means   we   now  
know   that   perfect   secrecy   can   only   be   obtained   with   a   totally   random   secret   key   whose   length,  
in   text   units,   is   greater   than   or   equal   to   the   amount   of   information   being   encrypted. (Shannon   1949)  
The   exact   transformation   achieved   by   the   OTP,   if   correctly   parameterized.   Such  
parameterization   is   also   known   as   a   "one   time   pad"   or   simply   a   "pad",   i.e.   any   key   fit   for   use   in  
an   OTP   transformation. (Menezes   Van   Oorshot   &   Vanstone   1997)    A   pad   has   strict   requirements   each   of   which   is  
a   critical   matter   to   the   overall   system   security.   If   these   requirements   are   not   met,   the  
cryptographic   operation   no   longer   meets   the   strict   definition   of   the   One   Time   Pad.   Such   an  
operation   no   longer   possesses   the   security   assurances   associated   with   the   use   of   the  
OTP. (Shannon   1949)   

 

As   we   have   discussed,   if   the   key   is   at   least   the   length   of   the   plaintext,   as   well   as   perfectly  
random,   used   only   once,   and   kept   secret,   then   the   system   is   "unbreakable". (Reuvers   &   Simons   2013   par   1)  
This   key   length   and   perfect   randomness   allows   each   unit   of   the   plaintext   to   be   encrypted,   or  
ciphertext   decrypted,   by   independent   combination   with   the   corresponding   unit   from   the  
pad. (Menezes   Van   Oorshot   &   Vanstone   1997)    This   combination   uses   a   randomness   preserving   operation,   such  
as   XOR   patented   by   Gilbert   Vernam,   which   we   explore   later   in   this   document,   in   Section   5.5.  
Independent   combination   of   the   input   units   results   in   the   equal   probability   for   all   possible  
inversion   transformations. (Menezes   Van   Oorshot   &   Vanstone   1997)    Thus,   one   time   pads   provide   a   perfectly  
secure   transformation   of   arbitrarily   sized   messages   so   long   as   the   key   material   is   completely  
random,   one   time   use,   pre-shared,   secret,   of   the   same   size   as,   or   longer   than,   the   message  
being   transformed. (Shannon   1949)  

 

The   previous   examples   assumes   two   pads,   identical   sequences   of   random   letters,   were  
securely   issued   to   both   parties.   This   process   is   known   as   key   distribution. (Van   Tilborg   &   Jajodia   2011)     The  
first   modern   symmetric   cryptosystems   used   physical   key   distribution. (Van   Tilborg   &   Jajodia   2011)    Methods  
of   the   time   typically   involved   concealable   pads   of   paper   and   a   pencil   to   perform   the   necessary  
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transformations.   Cryptographic   key   material   was   centrally   generated   and   stored   on   physical  
media   such   as   paper   or   magnetic   tape. (Van   Tilborg   &   Jajodia   2011)    Physical   distribution   to   was  
accomplished   through   couriers,   humorously   referred   to   as   “sneaker   net”. (Van   Tilborg   &   Jajodia   2011   p.   684)  
The   KGB,   Russia's   intelligence   organization,   is   famous   it's   one-time   pads,   so   small   they   could   fit  
in   the   palm   of   a   hand,   or   in   a   walnut   shell. (Smith   2007)    As   well,   the   security   requirements   of   the   OTP  
system   dictates   that   all   parties   involved   in   secure   message   exchange   destroy   key   material   after  
use. (Reuvers   &   Simons   2013)    This   not   only   prevents   reuse   but   also   ensures   key   material   does   not   fall   into  
the   wrong   hands. (Reuvers   &   Simons   2013)    The   KGB   is   also   famous   for   its   solution   to   this   problem,   their  
one-time   pad   key   material   was   printed   on   highly   flammable   nitrocellulose   sheets   which   burn  
quickly,   without   ash. (Hannan   &   Asif   2017)  

 

When   implemented   properly,   one-time   pads   have   the   strongest   possible   security  
guarantee. (Houtven   2013)    It   would   appear   that   the   OTP   solves   the   problem   of   perfect   encryption   and  
the   cryptographic   research   of   the   last   70   years   has   been   rather   redundant. (Houtven   2013)    This   is   not  
the   case,   use   of   one-time   pads   is   rare   due   to   being   "horribly   impractical". (Houtven   2013   p.   29)  
Application   of   the   one   time   pad   system   requires   the   secure   distribution   of   key   material   equal   in  
length   to   the   messages   intended   for   encryption. (Reuvers   &   Simons   2013)    This   poses   a   problem   for  
message   exchange   of   nontrivial   size   or   frequency.   One   time   pads   are   not   generally   practical   as  
it   is   difficult   to   distribute   enough   key   bits   to   protect   all   future   messages,   use   the   proper   key   bits  
during   encryption   and   decryption,   avoid   reuse   of   key   bits   by   mistake,   and   keep   all   data   involved  
secret. (Smith   2007)    In   retrospect,   the   OTP   poses   a   trade-off:   an   information-theoretic   security  
guarantee   or   impractical   key   requirements. (Houtven   2013)    The   One   time   pad   marks   the   advent   of  
modern   cryptography,   when   the   mathematical   principles   of   information   theory,   discovered   by  
Shannon,   would   mature   and   become   coupled   with   new   computational   abilities.   Theoretical   and  
technological   advancements   since   have   made   large   strides   in   reducing   the   complexity   of   these  
problems.   The   mid-1970s   saw   two   major   public   (i.e.,   non-secret)   advances.   The   first  
advancement   in   modern   cryptography   provided   a   technological   leap,   manageable   key  
sizes, (Kotzanikolaou   &   Douligeris   2006)    as   well   as   a   surge   in   public   awareness   which   revolutionized   the  
process   by   which   ciphers   were   designed.   The   second   addressed   the   key   distribution   problem  
through   key   exchange   protocols.  
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Section   3   :   Symmetric   Key   Cryptography  

3.1   :   The   Data   Encryption   Standard  
 

The   first   modern   cryptographic   advancement   since   Shannon's   contributions   began   with   work   at  
IBM   in   the   early   1970s   and   culminated   with   the   1977   publication   of   the   Data   Encryption  
Standard   (DES)   U.S.   Federal   Information   Processing   Standard   46-3   (FIPS   46-3). (Branstad   1978)    The  
ubiquity   of   digital   communication   and   the   rise   of   computer   systems   in   the   1960s   brought   with   it   a  
need   for   both   public   and   private   sector   security   services,   primarily   methods   of   data  
protection. (Branstad   1978)    This   need   was   identified   by   a   US   standards   bureau   who   brought   it   to   public  
notice, (Branstad   1978)    initiating,   for   the   first   time,   a   broad   interest   in   cryptographic   research. (Burr   1977)  

 

To   maintain   security   for   its   business   associates   and   large   financial   organizations,   the   US  
National   Bureau   of   Standards   (NBS)   conducted   a   study   on   the   US   government's   digital  
communication   capabilities   in   1972. (Branstad   1978)    Through   this   study   NBS   recognized   a   standard   for  
encrypting   sensitive   information   was   necessary. (Branstad   1978)     "Among   the   needs   for   physical,  
administrative   and   technical   security   measures   and   procedures,   the   need   for   a   method   of  
protecting   computer   data   during   transmission   and   storage   was   identified". (Branstad   1978   p.   iv)    In   an  
effort   to   develop   such   capability,   NBS   worked   with   the   National   Security   Agency   (NSA)   to  
determine   criteria   for   a   new   national   standard,   soliciting   proposals   in   1973. (Branstad   1978)    None   of  
the   submissions   were   suitable. (Branstad   1978)   

 

August   1974   marked   the   beginning   of   the   second   round   of   solicitation,   a   research   group   at   IBM  
was   prepared   for   the   call. (Branstad   1978)    This   triumphant   contender   was   designed   from   1973-74   at  
IBM,   the   algorithm   was   derived   from   Horst   Feistel's   work   on   the   Lucifer   cipher. (Keliher   1997)    The  
draft   Data   Encryption   Standard   (DES)   was   published   in   the   U.S.    Federal   Register    on   17   March  
1975. (Burr   1977)    For   the   first   time   in   the   development   of   an   encryption   process,   public   comments  
were   requested. (Branstad   1978)    More   amazingly   this   request   was   on   a   national   scale,   going   out   to  
those   of   industry,   government   experts,   and   the   cryptographic   community   at   large. (Burr   1977)    Two  
public   workshops   were   held   to   discuss   the   standard's   selection   via   the   design   criteria (Burr   1977)  
before   it   was   approved   as   a   federal   standard   in   November   1976. (Menezes   Van   Oorshot   &   Vanstone   1997)    Final  
publication   occurred   on   15   January,   1977 (Menezes   Van   Oorshot   &   Vanstone   1997)    "The   Standard   specifies   an  
algorithm   for   use   by   Federal   Departments   and   Agencies   in   the   cryptographic   protection   of  
unclassified   computer   data   during   transmission   or   in   storage". (Branstad   1978   p.   iv)    This   standard   was  
made   mandatory   for   all   electronic   fund   transfer   conducted   by   U.S.   government   including   those  
of   member   banks   of   the   Federal   Reserve   System. (Burr   1977)  
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Throughout   the   course   of   its   application,   cryptology   has   been   a   secretive   practice.   By   example,  
it   took   decades   before   the   declassification   of   the   cryptanalytic   principles   of   Japanese   and  
German   cipher   machines   from   World   War   II. (Simmons   2009)    However,   the   DES,   from   the   moment   of  
its   inception,   was   a   completely   public   algorithm. (Simmons   2009)    "Every   detail   of   its  
operations—enough   to   permit   anyone   who   wished   to   program   it   on   a   microcomputer—was  
widely   available   in   published   form   and   on   the   Internet".    (Simmons   2009   par   5)    The   result   was   that   one   of  
the   best   cryptographic   systems   in   history   was   also   the   most   public,   a   result   that   highlights   the  
weakness   of   security   by   obscurity. (Simmons   2009)  

 

Not   only   was   DES   the   first   publicly   accessible   cipher   to   be   approved   by   a   national   agency,   its  
subsequent   adoption   by   standards   organizations   worldwide   caused   the   DES   to   become   the   "de  
facto" (Simmons   2009   par.   3)    international   standard   for   both   business   and   commercial   data   security.   NBS'  
publication   of   the   DES   specification   created   a   surge   of   public   interest   in   cryptography   which  
acted   as   the   impetus   for   the   first   widespread   interest   academic   cryptology,   particularly  
cryptanalysis   of   block   ciphers. (Burr   1977)   

 

According   to   a   NIST   retrospective   about   DES:   

 

"The   DES   can   be   said   to   have   "jump-started"   the   nonmilitary   study   and   development   of  
encryption   algorithms.   In   the   1970s   there   were   very   few   cryptographers,   except   for   those  
in   military   or   intelligence   organizations,   and   little   academic   study   of   cryptography.   There  
are   now   many   active   academic   cryptologists,   mathematics   departments   with   strong  
programs   in   cryptography,   and   commercial   information   security   companies   and  
consultants.   A   generation   of   cryptanalysts   has   cut   its   teeth   analyzing   (that   is,   trying   to  
"crack")   the   DES   algorithm.   In   the   words   of   cryptographer   Bruce   Schneier,   "DES   did  
more   to   galvanize   the   field   of   cryptanalysis   than   anything   else.   Now   there   was   an  
algorithm   to   study."   An   astonishing   share   of   the   open   literature   in   cryptography   in   the  
1970s   and   1980s   dealt   with   the   DES,   and   the   DES   is   the   standard   against   which   every  
symmetric   key   algorithm   since   has   been   compared." (Burr   1977   p.   252)  
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3.2   :   Symmetric   Key   Definitions  
 

Symmetric-key   cryptography   was   the   only   method   of   encryption   publicly   known   before   1976. (Van  

Tilborg   &   Jajodia   2011)    Before   this   time,   all   pre-modern,   key   dependent,   cryptographic   system  
implementation,   whether   simple   transformations   by   hand   or   the   intricate   electromechanical  
machines   used   in   World   War   II,   were   of   the   same   logical   class.   Systems   of   this   kind   are   known  
as   secret-key,   single-key,   shared-key,   one-key,   private-key,   or   symmetric   key   cryptosystems. (Van  

Tilborg   &   Jajodia   2011)    Symmetric   systems   require   the   sender   and   receiver   use   an   identical  
cryptographic   key   during   message   transformation. (Van   Tilborg   &   Jajodia   2011)    Symmetric   key   algorithms  
are   implemented   as   either   a   block   cipher   or   a   stream   cipher. (Van   Tilborg   &   Jajodia   2011)  

 

Stream   ciphers   transform   individual   plaintext   digits   sequentially. (Van   Tilborg   &   Jajodia   2011)    The   size   of  
plaintext   digits   are   determined   by   the   stream   cipher   method. (Paar   &   Pelzi   2009)    Dated   methods   like   the  
Caesar   or   Vigenere   ciphers,   process   single   letters,   while   modern   implementations,   like   RC4,  
process   single   bits. (Paar   &   Pelzi   2009)    In   general,   stream   cipher   output   is   dependent   on   a   hidden  
internal   state,   initialized   by   cryptographic   key,   which   changes   as   the   cipher   operates. (Stallings   2017)    A  
stream   cipher   algorithm   functions   by   first   using   the   key   material   to   generate   the   "keystream",   a  
stream   of   pseudorandom   digits   of   arbitrary   length   the   same   as,   or   longer   than,   that   of   the  
plaintext   to   be   encrypted. (Van   Tilborg   &   Jajodia   2011)    Keystream   and   plaintext   digits   are   then   combined,  
via   a   randomness   preserving   operation,   to   produce   a   seemingly   random   digit   of   the   ciphertext  
stream. (Van   Tilborg   &   Jajodia   2011)    The   inverse   operation   uses   the   same   cryptographic   key   to   generate   an  
identical   key   stream   that   is   combined   with   the   ciphertext   to   recreate   the   original   plaintext. (Van   Tilborg  

&   Jajodia   2011)  

 

As   with   a   One-Time   Pad,   key   stream   units   are   sequentially   combined   with   plaintext   units   to  
produce   a   unit   of   the   ciphertext.   In   this   way,   a   stream   cipher   emulates   the   function   of   the   OTP  
which   is   proven   to   have   perfect   secrecy. (Van   Tilborg   &   Jajodia   2011)    However,   the   key   stream   is  
pseudorandom,   algorithmically   generated   from   a   small,   fixed   size   cryptographic   key. (Van   Tilborg   &  

Jajodia   2011)    Modern   examples   range   from   64   -   256   bits. (MHFP   2015)    We   know,   from   the   earlier   OTP  
discussion,   that   a   cryptographic   cipher   designed   to   achieve   perfect   secrecy   must   have   a   key   as  
long   as   the   intended   plaintext   message. (Shannon   1949)    Using   the   cryptographic   key   as   input,   a  
stream   cipher   algorithmically   generates   a   pseudorandom   keystream   of   arbitrary   length   as   long  
or   longer   than   the   plaintext. (Van   Tilborg   &   Jajodia,   2011)    It   is   this   keystream   that   is   combined,   using   a  
randomness   preserving   operation,   with   the   plaintext   digits. (Van   Tilborg   &   Jajodia,   2011)    As   the   key   of   a  
stream   cipher   is   less   than   the   length   of   the   plaintext   it   can   no   longer   guarantee   perfect   secrecy,  
the   resulting   keystream   is   only   pseudorandom. (Shannon   1949)    While   stream   ciphers   can   achieve  
high   security   assurance,   the   proof   of   security   associated   with   a   one-time   pad   no   longer   hold.  
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Converse   to   the   individual   transformations   applied   by   stream   ciphers,   block   ciphers   transform  
fixed-length   groups   of   bits,   the   same   size   as   the   key,   called   blocks. (Van   Tilborg   &   Jajodia,   2011)    Block  
cipher   output   is   generated   by   a   deterministic   transformation   that   is   specified   by   a   symmetric   key  
the   same   size   as   the   block   intended   for   encryption,   similar   to   an   OTP. (Van   Tilborg   &   Jajodia,   2011)  
However,   the   size   of   the   block   is   determined   by   the   cipher   and   while   a   cipher   may   be   capable   of  
operation   on   more   than   one   block   size,   prior   to   encryption,   plaintext   messages   must   be  
padded. (Van   Tilborg   &   Jajodia,   2011)    Padding   adds   artificial   plaintext   material   until   messages   are   a   multiple  
of   the   block   size   selected   during   a   particular   operation.   Methods   of   padding   are   explained   later,  
in   Section   10.2,   of   this   report.   Next,   we   explore   the   fundamental   concepts   which   connect  
Shannon's   discoveries   in   Information   Science   to   the   revolutionary   DES   and   its   contemporary  
successor,   the   Advanced   Encryption   Standard   (AES). (Stallings   2017)   
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3.3   :   Symmetric   Block   Cipher   Design  
 

This   section   will   explore   the   concepts   of   diffusion,   confusion,   and   how   the   operations   that  
provide   them   relate   to   the   evolution   of   cipher   structure.   Confusion   and   diffusion   were   first  
identified   as   properties   of   a   secure   cipher   identified   by   Claude   Shannon   in    A   Mathematical  
Theory   of   Cryptography(1945) . (Shannon   1945)    To   paraphrase   Shannon,   confusion   causes   the  
relationship   between   the   ciphertext   and   the   symmetric   key   to   be   as   complex   as   possible,   where  
as   diffusion   dissipates   the   statistical   structure   of   the   plaintext   over   the   entirety   of  
ciphertext. (Shannon   1949)    In   his   work,   Shannon   suggests   that   a   combination   of   the   two  
transformations   are   sufficient   to   obscure   the   structural   characteristics   of   the   plaintext   and  
impede   statistical   analysis   of   its   relation   to   the   key   and   ciphertext. (Shannon   1949)    Today,   the  
properties   of   confusion   and   diffusion   have   quantifiable   definitions.   

 

Confusion   applies   to   ciphers   where   by   each   ciphertext   unit   has   highly   nonlinear   relations   with  
multiple   key   bits. (Stallings   2017)    A   function   said   to   provide   confusion   generally   means   a   process  
changes   data   from   the   input   to   the   output   in   a   complex   way   which   obscures   their  
relationship. (Keliher   1997)    In   the   context   of   cryptographic   ciphers,   confusion   attempts   to   make  
discovery   of   the   key   used   for   a   particular   cryptographic   transformation   as   difficult   as  
possible. (Stallings   2017)    Even   by   cryptanalysis   of   a   large   number   of   related   plaintext   and   ciphertext,  
the   relation   between   the   key   material   input   and   the   ciphertext   output   must   be   so   complex   as   to  
make   it   relatively   impossible   to   deduce. (Stallings   2017)    Therefore,   by   a   function   with   high   confusion,  
each   ciphertext   bit   should   depend   on   the   entire   key,   as   well   as   in   distinct   ways   on   various   key  
bits   such   that   variance   in   even   a   single   key   bit   alters   the   transformation   entirely. (Stallings   2017)  
Modern   methodology   recommends   this   be   "...achieved   by   the   use   of   a   complex   substitution  
algorithm". (Stallings   2017   p.   125)  

 

Diffusion   applies   to   ciphers   where,   statistically,   a   single   plaintext   bit   flip   causes   a   change   in   half  
of   the   ciphertext   bits. (Stallings   2017)    A   function   said   to   provide   diffusion   generally   means   that   changes  
in   a   plaintext   unit   will   reflect   in   a   quantifiable   portion   of   the   output. (Stallings   2017)     In   the   context   of  
cryptographic   ciphers,   diffusion   attempts   to   make   the   statistical   analysis   relationship   between  
the   plaintext   and   ciphertext   as   complex   as   possible. (Stallings   2017)    "This   is   achieved   by   having   each  
plaintext   digit   affect   the   value   of   many   ciphertext   digits;   generally,   this   is   equivalent   to   having  
each   ciphertext   digit   be   affected   by   many   plaintext   digits." (Stallings   2017   p.   124)    Done   well,   every  
plaintext   unit   affects   every   unit   of   the   ciphertext,   complicating   cryptanalysis. (Stallings   2017)    Even  
when   an   adversary   has   intercepted   sufficient   material,   the   cryptanalytic   work   required   is   great,  
as   the   statistical   relationships   of   the   plaintext   are   diffused,   evident   only   in   blocks   of   very   small  
individual   probability. (Shannon   1949)    "In   a   binary   block   cipher,   diffusion   can   be   achieved   by  
repeatedly   performing   some   permutation   on   the   data   followed   by   applying   a   function   to   that  
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permutation". (Stallings   2017   p.   125)    When   this   is   done,   plaintext   bits   of   different   positions   contribute   to  
each   ciphertext   bit. (Stallings   2017)  

 

Generally,   the   simplest   way   to   achieve   diffusion   and   confusion   properties   is   through   a  
well-defined   and   repeatable   series   of   substitutions   and   transpositions. (Shannon   1949)    All   ciphers  
involve   transposition   or   substitution   in   some   form,   and   those   that   employ   a   combination   of   these  
two   mathematical   operations   are   capable   of   particularly   robust   security   assurances. (Britannica    2016)  
Substitution   replace   one   symbol,   or   symbol   group,   with   another   symbol,   or   symbol   group.   A  
cryptographic   substitution   is   an   operation   that   replaces   a   plaintext   unit   or   segment   value   with   a  
defined   ciphertext   value. (Van   Tilborg   &   Jajodia,   2011)    Transposition   exchanges   the   location   of   two  
entities. (Van   Tilborg   &   Jajodia,   2011)    The   strict   cryptographic   definition   requires   that   only   two   members   of   a  
given   set   are   transposed   while   all   other   members   retain   their   location.   In   practice   the   term  
transposition   is   often   used   erroneously   to   reference   an   arbitrary   reordering   of   set   members,   a  
function   defined   as   permutation.   The   reason   for   their   interchangeability   stems   from   the   fact   that  
a   series   of   transpositions   can   be   made   to   equal   any   permutation.   As   is   convention,   we   will   use  
permutation   to   generally   reference   such   transformations   when   we   do   not   require   the   strictness  
of   transposition.   We   can   compare   cryptographic   substitution   and   transposition   functions.  
Cryptographic   transposition   exchanges   a   plaintext   unit's   location   without   altering   the  
value. (Britannica    2016)    Cryptographic   substitution   alters   a   plaintext   unit's   value   without   a   change   in  
location. (Britannica    2016)  

 

For   transformations   involving   a   nontrivial   number   of   message   symbols   both   functions   are  
individually   insecure. (Shannon   1949)    Modern   cryptographic   round   functions   thus   implement  
substitution   operations   with   sufficient   properties   of   confusion   and   transposition   operations   with  
sufficient   properties   of   diffusion. (Menezes   Van   Oorshot   &   Vanstone   1997)    Modern   block   ciphers   consist   of   an  
initial   conversion   to   binary   before   applying   cipher   rounds   with   a   well   defined   sequence   of   S-box  
substitutions   and   P-box   permutations. (Menezes   Van   Oorshot   &   Vanstone   1997)   

 

A   substitution   box   or   S-box   is   used   to   substitute   a   block   of   input   bits   for   a   corresponding   block   of  
output   bits. (Asif   Buchanan   Li   2018)    S-Boxes   use   nonlinear   Boolean   functions   to   obscure   the   relationship  
between   the   key   and   the   ciphertext,   achieving   confusion. (Van   Tilborg   &   Jajodia,   2011)    The   desired   property  
is   that   each   output   bit   will   depend   on   every   input   bit. (Asif   Buchanan   Li   2018)    A   well   designed   S-box   has  
the   effect   that   a   change   one   bit   of   plaintext   will,   on   average,   result   in   a   change   in   half   of   the  
ciphertext   bits. (Asif   Buchanan   Li   2018)   

 

A   permutation   box   or   P-box   is   used   to   permute   input   bits. (Brown   &   Seberry   1990)    A   P-Box   causes  
diffusion   by   individual   transposition   of   the   outputs   of   one   round   forming   a   permutation   that   is  
input   to   the   next   round. (Brown   &   Seberry   1990)    An   effective   P-box   ensures   the   bits   of   any   input   source  
are   distributed   to   as   many   individual   inputs   of   the   next   rounds. (Brown   &   Seberry   1990)    In   modern   ciphers  
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this   is   done   such   that   each   of   the   S-box   input   bits   come   from   the   outputs   of   different   S-boxes  
and   none   of   the   input   bits   to   a   given   S-box   comes   from   the   output   of   that   same   S-box. (Brown   &  

Seberry   1990)  

 

The   substitution   of   binary   units   is   a   form   of   fractionation. (Britannica    2016)    Fractionation   is   a   general  
substitution   of   individual   symbols   in   the   plaintext   to   multiple   symbols   in   the   ciphertext, (Britannica    2016)  
the   method   of   encoding   implemented   by   Francis   Bacon   in   his   Bacon   Cipher.   Modern  
fractionation   methods   convert   each   message   unit   by   a   standardized   binary   representation.   The  
binary   string   created   undergoes   cryptographic   transformation,   the   result   of   which   may   then   be  
reverted   into   a   message   alphabet   for   human   interpretation.   When   a   fractionated   message   is  
transposed,   the   components   of   message   units   become   widely   separated   in   the   cipher   text,  
achieving   diffusion. (Kopal   2018)   

 

A   cipher   alternating   application   of   substitution   and   permutation   transformations   was   first  
implemented   by   Horst   Feistel,   who   lead   a   team   at   IBM   in   the   late   1960's. (Keliher   1997)    Feistel’s  
famous   Lucifer   cipher   is   a   descendant   of   Shannon's   product   cipher   that   alternates   confusion  
and   diffusion   functions. (Stallings   2017)    It   was   found   that   iterating   a   combination   of   these   functions   on  
the   binary   string   generally   makes   cryptanalysis   increasingly   harder   to   leverage. (GJMN   2015)    This  
structure   became   the   archetype   for   block   cipher   design   after   DES   was   adopted   as   the   US  
national   cryptographic   standard. (Keliher   1997)    To   this   day,   block   cipher   design   relies   on   confusion  
and   diffusion   of   message   structure.   The   Feistel   cipher   structure,   nearly   half   a   century   in   age,   is  
the   general   structure   implemented   by   Triple   Data   Encryption   Algorithm   (TDEA)   and   the  
Advanced   Encryption   Algorithm   (AEA)   the   two   encryption   algorithms   currently   approved   for  
protecting   unclassified   computer   data   by   NIST. (Stallings   2017)   

 

Most   contemporary   block   ciphers   are   categorized   as   iterated   product   ciphers. (Van   Tilborg   &   Jajodia,   2011)  
Modeled   after   the   concept   of   a   product   cipher,   systems   built   by   composition   of   simple  
cryptographic   operations. (Van   Tilborg   &   Jajodia,   2011)    The   Product   Cipher   was   first   put   forth   by   Claude  
Shannon   in    Communication   Theory   of   Secrecy   Systems(1949) . (Shannon   1949)    When   properly  
designed,   the   resulting   product   cipher   shows   greater   resilience   under   cryptanalysis   than   the  
component   operations. (Shannon   1949)    Iterated   ciphers   use   repeat   applications   of   a   round   function,  
an   invertible   cryptographic   transformation,   to   convert   fixed-size   blocks   of   message   text. (Van   Tilborg   &  

Jajodia,   2011)    Each   cipher   iteration   consists   of   one   application   of   the   round   function   and   each   round  
function   is   composed   of   a   sequence   of   cryptographic   operations. (Van   Tilborg   &   Jajodia,   2011)    As  
cryptographic   primitives   generally   compose   a   given   cryptographic   system,   cryptographic  
operations   are   the   basic   building   blocks   of   cryptographic   cipher   rounds. (Van   Tilborg   &   Jajodia,   2011)    A  
product   cipher   is   called   an   iterative   product   cipher   if   all   round   functions   are   identical. (Van   Tilborg   &  

Jajodia,   2011)   
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Modern   cipher   round   structure   is   defined   by   the   concept   of   an   SP-network,   or  
substitution–permutation   network   (SPN). (Van   Tilborg   &   Jajodia,   2011)    An   SPN   takes   a   plaintext   block   and  
cryptographic   key   as   inputs,   applying   cipher   rounds,   alternating   substitution   boxes   (S-boxes)  
and   permutation   boxes   (P-boxes),   to   produce   the   output   ciphertext   block. (Van   Tilborg   &   Jajodia,   2011)    Each  
round   transformation   is   executed   in   the   same   manner,   with   variance   provided   by   round   values,  
generally   called   round   constants   a   round   key   or   subkey. (Van   Tilborg   &   Jajodia,   2011)    A   key   schedule  
algorithm   calculates   round   keys   through   the   use   of   simple   cryptographic   operations,   such   as  
S-boxes   and   P-boxes,   on   the   input   cryptographic   key. (Van   Tilborg   &   Jajodia,   2011)    During   each   round,   the  
round   key   is   combined   using   what   is   known   as   a   group   operation,   a   binary   operation   satisfying  
certain   mathematical   axioms. (Van   Tilborg   &   Jajodia,   2011)    We   will   cover   these   later,   in   Section   6.2.  

 

Two   key   properties   of   SP   networks   are   the   avalanche   property,   identified   by   Feistel;   and   the  
completeness   property,   identified   by   Kam   and   Davida. (Brown   &   Seberry   1990)    Completeness   effect  
applies   whenever   each   bit   of   the   ciphertext   depends   upon   every   plaintext   bit. (Keliher   1997)  
Avalanche   effect   applies   whenever   one   input   bit   is   changed,   on   average   half   the   output   bits  
change. (Keliher   1997)    These   effects   work   to   ensure   that   every   output   bit   becomes   related   to   of   each  
input   bit   in   as   few   rounds   as   possible. (Brown   &   Seberry   1990)    A   well-designed   SPN   implements  
alternating   rounds   of   S-box   substitutions   and   P-box   permutations   to   satisfy   the   properties   of  
confusion   and   diffusion   to   thwart   application   of   statistical   cryptanalysis. (Keliher   1997)    An   effective  
cryptographic   transformation   must   redistribute   non-uniformity   of   plaintext   bits   across   much  
larger   structures   in   the   ciphertext,   making   that   non-uniformity   indetectable.   As   a   bit   can   have  
only   two   states,   a   secure   cryptographic   transformation   should   function   such   that   bit   conversion,  
from   one   seemingly   random   state   to   another,   occurs   with   half   probability.   In   the   output   of   a   well  
designed   SPN,   statistically   half   of   the   bits   are   related   to   any   one   input   bit. (Van   Tilborg   &   Jajodia,   2011)  
Therefore   the   value   of   any   single   input   bit   is   hard   to   predict. (Van   Tilborg   &   Jajodia,   2011)    However,   one  
more   fact   that   we   have   previously   discussed,   without   a   secure   cryptographic   key,   the   SPN,   as  
well   as   all   modern   cryptographic   methods,   perform   a   complex   but   fully   deterministic  
transformation   of   its   inputs. (Van   Tilborg   &   Jajodia,   2011)  
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3.4   :   Key   Management  
 

Generally,   cryptographic   keys   are   the   mechanism   by   which   cryptographic   algorithms   allow  
information   to   remain   secure   when   transmitted   over   untrusted   channels   or   held   in   untrusted  
storage.   In   practice,   keys   are   used   as   cryptographic   system   input   to   produce   secure   output.   We  
have   discussed   how   cryptographic   keys   are   implemented   such   that   they   provide   security   even   if  
the   cryptographic   method   is   known   completely   by   adversaries.   If   a   system   is   secure   even   when  
the   enemy   knows   everything   except   the   key,   then   all   that   is   needed   is   to   manage   keeping   the  
keys   secret.    By   successfully   managing   keys,   cryptographic   methods   replace   a   difficult   problem,  
keeping   an   indefinite   amount   of   information   secure,   all   messages,   with   a   much   more  
manageable   one,   keeping   a   single   relatively   small   secret   secure,   an   encryption   key.   A   system  
that   requires   long-term   secrecy   for   something   as   large   and   complex   as   the   whole   of   it's   design  
obviously   cannot   achieve   that   goal.   As   we   have   discussed,   those   systems   designed   with  
obscurity   as   the   primary   mechanism   of   security   assurance   only   replaces   one   difficult   problem,  
the   secrecy   of   all   messages,   with   another   of   near   equal   difficulty,   the   secrecy   of   a   widely   applied  
process.   Therefore,   successful   key   management   is   critical   to   the   security   of   any   cryptosystem.   

 

Key   Management   is   generally   the   process   of   secure   cryptographic   key   use   in   relation   to   a   given  
cryptosystem. (Van   Tilborg   &   Jajodia,   2011)    Of   primary   concern   for   users   wishing   to   exchange   cryptographic  
messages,   is   the   parameterization   necessary   to   transform   messages   sent   and   invert   messages  
received.   To   ensure   security,   users   must   establish   and   maintain   those   inputs   necessitated   by  
their   intended   cryptosystem.   The   life   cycle   associated   with   cryptographic   keying   material  
includes   their   generation,   distribution,   storage,   update,   and   cancellation. (Van   Tilborg   &   Jajodia,   2011)    Key  
generation   for   example,   ensures   that   cryptographic   keys   are   both   sufficiently   random   and  
contain   enough   entropy   to   prevent   it   from   being   guessed   by   adversaries   or   discovered   through  
cryptanalysis. (Van   Tilborg   &   Jajodia,   2011)    This   problem,   while   difficult,   has   been   addressed   in   many   ways  
by   various   cryptographic   systems   RFC   4086. (Schiller   Crocker   2005)    Key   generation   is   primarily   a  
mathematical   and   thus   computational   process.   In   contrast,   other   aspects   of   key   management  
involve   social,   political,   legal,   and   ethical   considerations   such   as   organizational   practices   and  
policies,   user   education,   and   coordination   between   individual,   departmental,   and   external  
entities. (Van   Tilborg   &   Jajodia,   2011)    Due   to   the   necessary   inclusion   of   significant   human   involvement,   key  
management   is   a   deeply   challenging   aspect   of   cryptographic   practice. (Van   Tilborg   &   Jajodia,   2011)    This  
document   will   not   address   every   aspect   of   Key   Management,   rather,   it   hopes   to   highlight   major  
complications   and   their   solutions.  

 

Historically,   one   of   the   most   critical   challenges   in   the   practice   of   cryptography   has   been   the  
secure   distribution   of   keys. (Van   Tilborg   &   Jajodia,   2011)    Cryptographic   keys,   in   practice,   represent   a   shared  
secret   between   entities   used   to   maintain   a   secure   communication   channel.   The   process   of   key  
distribution   defines   methods   for   exchange   of   the   information   necessary   to   establish   a   secure  
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communication   channel. (Van   Tilborg   &   Jajodia,   2011)    The   key   exchange   problem   asks   how   entities   of  
separate   location   can   agree   upon   a   cryptographic   key,   without   risk   of   eavesdroppers. (Van   Tilborg   &  

Jajodia,   2011)    If   two   parties   cannot   establish   secure   key   distribution   they   won't   be   able   to  
communicate   without   the   risk   of   messages   being   interpreted   by   adversaries.   Key   exchange  
protocols   generally   define   a   method   by   which   cryptographic   key   information   is   communicated  
between   parties. (Van   Tilborg   &   Jajodia,   2011)    Secure   key   exchange   is   difficult   as   it   must   occur   via   a   secure  
channel. (Van   Tilborg   &   Jajodia,   2011)    As   key   exchange   is   a   form   of   information   exchange   it   is   said   to  
transpire   across   a   channel   between   communicating   participants.   A   'secure   channel'   generally  
references   some   method   of   transferring   data   resistant   to   eavesdroppers. (Van   Tilborg   &   Jajodia,   2011)    The  
act   of   key   exchange   is   said   to   occur   either   "in-band"   or   "out-of-band". (Dulaney   &   Easttom   2017    p   242)  
In-band   keys   are   exchanged   through   the   same   communication   channel   intended   for   encrypted  
information. (Dulaney   &   Easttom   2017)    Out-of-band   keys   are   exchanged   via   any   other   communication  
channel   than   the   one   intended   for   encrypted   information. (Dulaney   &   Easttom   2017)   

 

Perfectly   secure   channels   do   not   exist   in   the   physical   world. (PSP,   2016)    "There   are,   at   best,   only  
ways   to   make   insecure   channels   (e.g.,   couriers,   homing   pigeons,   diplomatic   bags,   etc.)   less  
insecure:   padlocks   (between   courier   wrists   and   a   briefcase),   loyalty   tests,   security  
investigations,   and   guns   for   courier   personnel,   diplomatic   immunity   for   diplomatic   bags,   and   so  
forth.   ". (PSP,   2016   p.   2)    One   time   pads,   though   they   produce   perfectly   secure   ciphertext   with   a   simple  
transformation,   require   the   same   amount   of   key   information   to   be   shared   as   the   information   to  
be   encrypted.   Modern   ciphers   retain   much   of   the   security   offered   by   the   one   time   pad   system  
while   requiring   a   smaller   information   exchange   in   the   form   of   cryptographic   keys. (Van   Tilborg   &   Jajodia,  

2011)    As   we   have   seen,   instances   where   a   symmetric   key   cryptosystem   is   used,   require   the  
exchange   of   an   identical   key   as   symmetric-key   algorithms   use   the   same   key   for   encryption   and  
decryption   of   a   message.   A   severe   disadvantage   of   symmetric,   or   single-key,   cryptography   is  
that   it   requires   a   secret   key   to   be   established   between   users   and   maintained   in   secret   for   secure  
use.   This   requirement   is   necessary   as   the   proper   cryptographic   keying   facilitates   the   successful  
operation   of   a   given   cryptosystem.   

 

While   symmetric   keys   are   miniscule   in   length   relative   to   those   of   the   OTP,   if   capability   of  
message   exchange   between   users   is   meant   to   be   both   complete   and   secure,   the   sharing   of   a  
distinct   key   is   required   for   each   possible   pair   of   communicating   parties. (Kotzanikolaou   &   Douligeris   2006)    We  
will   find   that,   with   each   added   participant,   the   required   number   of   keys   increases  
rapidly. (Kotzanikolaou   &   Douligeris   2006)    We   have   discussed   how   one   pair   of   entities   would   require   a   single  
key,   what   is   required   for   each   new   participant?    Each   new   user   added   must   generate   a   key   for  
each   previous   user.   If   we   were   to   consider   adding   the   nth   unique   participant,   it   would   require  

new   keys.   Beginning   from   a   pair,   each   key   addition   forms   a   series  n − 1)  (  
keys   are   required. (Kotzanikolaou   &   Douligeris   2006)    This   leads   to   a   need   for   45 ..  n − 1) (n −1) 2  1 + 2 + . + ( = n /  

unique   keys   for   10   participants,   4950   keys   for   100   and   to    499500   keys   for   1000. (Kotzanikolaou   &  

Douligeris   2006)    Not   only   must   a   secret   key   be   securely   exchanged   between   each   pair   of  
communicating   entities   prior   to   system   use,   as   each   key   is   shared   between   two   entities,   its  
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future   secrecy   and   thus   a   system's   security   depends   on   both   entities. (Kotzanikolaou   &   Douligeris   2006)  
Additionally,   due   to   the   difficulty   of   key   distribution,   duration   of   cryptographic   key   use,   and   thus  
the   frequency   of   key   updates   further   amplify   the   key   exchange   problem.   As   it   increases  
adversarial   effort   to   recover   multiple   keys,   they   should   be   frequently   changed.   Additionally,   while  
groups   of   messages   could   share   a   key,   ideal   security   requires   keys   be   replaced   after   each  
ciphertext   exchange.   This   practice   limits   risks   involved   with   system   failure,   as   key   update  
frequency   increases,   number   of   ciphertexts   recoverable   on   key   compromise,   decreases.  
However,   the   difficulty   of   consistent   secure   key   use   increases   in   proportion   to   the   number   of  
participants   and   their   messages.  

 

To   understand   modern   key   management,   it   is   important   to   understand   the   two   types   of  
cryptosystems,   symmetric   or   secret   key   and   asymmetric   or   public   key. (Van   Tilborg   &   Jajodia,   2011)    The  
theory   of   asymmetric   methods   was   first   made   public   in   1976. (Van   Tilborg   &   Jajodia,   2011)    The   technology  
to   support   public   use   of   these   methods   was   not   available   before   the   mid   1990's. (Van   Tilborg   &   Jajodia,  

2011)    All   earlier   cryptographic   systems,   both   ancient   and   modern,   were   symmetric   in   nature.   As  
we   have   discussed,   symmetric   cryptography   is   based   on   the   use   of   a   single   secret   key   is   used  
to   perform   both   a   cryptographic   operation   and   its   inverse. (Van   Tilborg   &   Jajodia,   2011)    This   necessitates   a  
secure   method   of   conveyance   for   at   least   one   cryptographic   key   copy   and   a   heightened   risk   of  
compromise   during   transfer   and   at   either   end-point   due   to   this   shared   key. (Van   Tilborg   &   Jajodia,   2011)    The  
requirement   of   shared   secret   key   access   is   the   defining   disadvantage   of   symmetric   systems.  

 

Asymmetric   or   Public   key   cryptography   is   based   on   the   use   of   a   mathematically   related   key   pair  
where   by   one   member   of   the   pair   is   used   to   perform   a   cryptographic   operation   and   the   other   is  
used   to   perform   the   cryptographic   inverse. (Van   Tilborg   &   Jajodia,   2011)    This   pair   consists   of   a   key   which  
may   be   readily   published   or   revealed   without   risk,   the   public   key. (Van   Tilborg   &   Jajodia,   2011)    As   well   as   a  
key   which   must   be   kept   secret   or   revealed   only   to   trusted   parties,   the   private   key. (Van   Tilborg   &   Jajodia,  

2011)    In   practical   systems,   the   mathematical   relationship   shared   by   an   asymmetric   key   pair   is  
made   such   that   knowledge   of   the   public   key   does   not   allow   determination   of   the   private   key  
efficiently. (Van   Tilborg   &   Jajodia,   2011)    While   public-key   systems   are   capable   of   the   functionality  
necessitated   by   modern   security   systems,   it   is   not   best   practice   to   use   them   on   their   own. (Paar   &  

Pelzi   2009)    Some   of   the   most   prevalent   misunderstandings   related   to   asymmetric   cryptography  
follow.  

 

It   is   commonly   thought   that   asymmetric   encryption   methods   are   less   susceptible   to  
cryptanalysis. (Stallings   2017)    "There   is   nothing   in   principle   about   either   symmetric   or   public-key  
encryption   that   makes   one   superior   to   another   from   the   point   of   view   of   resisting  
cryptanalysis". (Stallings   2017   p.   284)    The   security   provided   by   a   given   encryption   scheme   is   dependent  
firstly   on   the   relative   strength   of   it's   design   and   then   on   cryptographic   key   size   as   it   determines  
computational   work   involved   in   compromise   by   brute   force. (Stallings   2017)    The   second   is   that  
asymmetric   systems   provide   a   comprehensive   solution   to   the   faults   of,   and   thus   make   obsolete,  
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symmetric   system   use. (Stallings   2017)    In   fact,   "because   of   the   computational   overhead   of   current  
public-key   encryption   schemes,   there   seems   no   foreseeable   likelihood   that   symmetric  
encryption   will   be   abandoned". (Stallings   2017   p.   284)    In   practice,   public-key   encryption   methods   are  
incredibly   computationally   intensive,   about   one   hundred   to   one   thousand   times   slower   than  
private-key   algorithms. (Paar   &   Pelzi   2009)    Lastly,   there   is   a   feeling   that   the   asymmetric   solution   of  
public   key   distribution   makes   trivial   the   cumbersome   handshaking   and   exponential   growth  
involved   with   symmetric   secret   key   distribution. (Stallings   2017)    In   fact,   "   …   some   form   of   protocol   is  
needed,   generally   involving   a   central   agent,   and   the   procedures   involved   are   not   simpler   nor  
any   more   efficient   than   those   required   for   symmetric   encryption". (Stallings   2017   p.   285)  

 

Symmetric   cryptography   and   asymmetric   cryptography   are   not   mutually   exclusive,   these  
techniques   are   used   to   complement   each   other   in   practice. (Van   Tilborg   &   Jajodia,   2011)    Most   practical  
protocols   use   a   hybrid   approach   which   incorporates   both   symmetric   and   asymmetric  
primitives. (Paar   &   Pelzi   2009)     "Examples   include   the   SSL/TLS   protocol   that   is   commonly   used   for  
secure   Web   connections,   or   IPsec,   the   security   part   of   the   Internet   communication   protocol". (Paar  

&   Pelzi   2009   p.   154)    Modern   information   security   systems,   among   other   things,   use   symmetric  
cryptographic   primitives   for   the   encryption   and   decryption   of   data   and   asymmetric   cryptographic  
primitives   for   key   distribution. (Van   Tilborg   &   Jajodia,   2011)    As   a   basic   example,   "symmetric   cryptography  
can   be   used   to   encrypt   a   message   and   asymmetric   cryptography   can   be   used   to   securely  
transfer   the   secret   key   used   to   encrypt   the   file   to   the   intended   recipient(s)". (Van   Tilborg   &   Jajodia,   2011   p.   684)  
Ironically,   while   it   eliminates   many   of   the   problems   associated   with   symmetric   key   distribution,  
asymmetric   cryptography   is   rarely   used   for   data   encryption. (Paar   &   Pelzi   2009)    As   public-key   inventor,  
Whitfield   Diffie,   has   said,   “the   restriction   of   public-key   cryptography   to   key   management   and  
signature   applications   is   almost   universally   accepted.” (Stallings   2017   p.   284)  
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3.5   :   The   Advanced   Encryption   Standard  
 

The   1990s   brought   the   World   Wide   Web   to   the   public,   the   excitement   which   ensued   generated  
rapid   economic   expansion   in   computer   technology. (LFS   2018)    Serious   threats   arose   in   the   1990s,  
challenging   the   security   of   both   governmental   and   commercial   interests,   and   called   for   a  
reassessment   of   the   US's   cryptographic   capability. (LFS   2018)    Before   then,   sensitive   information  
sent   over   the   Internet,   such   as   financial   data,   was   encrypted,   if   at   all,   with   DES. (LFS   2018)    Due   to   its  
vast   popularity   and   duration   of   use,   the   DES   is   the   cryptographic   system   and   de   facto   standard  
against   which   every   symmetric   key   algorithm   of   the   previous   century   was   compared. (Burr   1977)  
Regardless   of   DES'   popularity,   the   56-bit   key   size   was   thought   to   be   too   small,   even   upon  
release   in   1976. (Gilmore   2005)    It   was   claimed   that   governments   in   the   1970's   had   sufficient  
computing   power   to   break   DES. (Gilmore   2005)    By   the   1990s   close,   cryptanalysts   would   recover   DES  
messages   in   under   24   hours. (LFS   2018)  

 

NBS,   renamed   the   National   Institute   of   Standards   and   Technology   (NIST)   in    1988 ,   held   another  
competition   to   determine   a   suitable   standard,   this   time   accepting   international   submissions. (LFS  

2018)    In   the   September   1997   Federal   Register,   NIST   solicited   submissions   for   the   Advanced  
Encryption   Algorithm,   which   would   be   “an   unclassified,   publicly   disclosed   encryption   algorithm  
available   royalty-free   worldwide   that   is   capable   of   protecting   sensitive   Government   information  
well   into   the   next   century.” (LFS   2018   p.   17)    NIST   received   21   submissions   and   held   the   first   public  
conference   in   1998. (LFS   2018)     The   selection   process   was   even   more   open   and   transparent   than   its  
predecessor.   DES   was   officially   replaced   by   the   Advanced   Encryption   Standard   (AES)   after  
selection   of   Rijndael,   the   submission   of   Belgian   cryptographers   Vincent   Rijmen   and   Joan  
Daemen. (LFS   2018)    The   selection   process   as   well   as   the   resulting   cipher   won   praise   from   the  
international   cryptographic   community,   presumably   restoring   confidence   to   those   suspicious   of   a  
backdoor   in   the   standard's   predecessor.   

 

In   2001   NIST   announced   FIPS   197   and   DES'   aging   designation   as   a   standard   was   withdrawn.  
Despite   deprecation   as   an   official   standard,   DES,   specifically   the   still-approved   and  
computationally   secure   triple-DES   variant,   remained   popular. (LFS   2018)    DES'   56-bit   key-size   was  
shown   to   be   insufficient   when,   in   1997,   RSA   Data   Security   began   to   issue   public   challenges   to  
break   DES. (Almunawar   2001)    The   first   was   completed   by   a   team   in   96   days,   two   more   challenges   were  
hosted   the   next   year,   were   broken   in   41   days   and   then   56   hours.   Six   months   later   in   January   of  
1999   DES   was   broken   in   22.25   hours. (Almunawar   2001)    As   a   result,   the   use   of   single   DES   encryption  
is   now   insecure   and   should   not   be   included   in   new   cryptosystem   design,   as   well,   messages  
protected   by   any   cryptosystem   implementing   single   DES   are   at   risk.   

 

Since   standardization   by   the   US   federal   government   in   2001,   the   U.S.   Department   of  
Commerce’s   National   Institute   of   Standards   and   Technology   (NIST)   estimates   a   $250   billion  
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economic   impact   from   the   Advanced   Encryption   Standard   (AES)   adoption   by   private   industry. (LFS  

2018    "Today,   the   AES   protects   everything   from   classified   data   and   bank   transactions   to   online  
shopping   and   social   media   apps." (NIST   2018   par.   2)    Professor   Christof   Paar   of   the   Ruhr   University   of  
Bochum,   Germany,   an   internationally-renowned   cryptography   and   AES   specialist,   estimates  
that   the   algorithm   encrypts   well   over   half   of   all   newly   created   data. (Chernev   2019)     This   paper   seeks   to  
provide   information   on   the   theory,   context,   and   mechanism   of   the   world's   most   used  
cryptographic   system,   Rijndael,   the   Advanced   Encryption   Standard. (Paar   &   Pelzi   2009)  
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Part   2 

Mathematical   Techniques 
of   the  
Advanced   Encryption   Standard  
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Section   4   :   Set   Theory  

Section   4.1   :   Establishing   Sets  
 

To   facilitate   the   understanding   of   cryptographic   algorithms   it   is   useful   to   examine   relevant  
mathematics.   Modern   cryptographic   primitives   implemented   in   both   symmetric   and   asymmetric  
ciphers   are   based   on   arithmetic   within   a   finite   number   of   elements. (Paar   &   Pelzi   2009)    Number   sets  
with   which   we   are   familiar,   such   as   the   set   of   integers,   are   infinite. (Paar   &   Pelzi   2009)     Generally,   sets  
are   abstract   structures,   representing   unordered   collections   of   distinct   objects. (Cohn   1981)    Formally,  
the   entities   which   comprise   a   given   set   define   the   collection   and   thus   determine   its   uniqueness.  
(Cohn   1981)    As   each   element   of   a   set   is   distinct   and   the   collection   is   unordered,   how   we   choose   to  
list   or   represent   a   set   makes   no   difference,   every   representation   is   equivalent   to   the   same  
abstract   structure.  

 

By   convention   a   set   A,   is   represented   by   capital   letters   and   the   elements   which   a   given   set  
contains   are   denoted   by   lower-case   letters,   a.   If   we   suppose   the   set   S,   contains   a   given   element  
e,   we   state   that   e   is   an   element   (or   member)   of   S,   or   e   is   in   S,   or   e   belongs   to   S.   We   denote   the  
relation   "element   of   a   set",   known   as   set   membership,   by   the   "∈"   symbol.   We   express   the  
membership   relation,   .   Conversely,   if   element   e   is   not   a   member   of   the   set   S,   we   state   that ∈S  e  
e   is   not   an   element   of   S,   or   that   e   is   not   in   S.   We   express   this   relationship,   .   Sets   are ∉S  e  
potentially   infinite   collections,   consisting   of   distinct   objects   said   to   possess   the   relation   of  
membership.   This   membership   relation   is   said   to   define   the   set.  

 

  A   set   is   said   to   be   finite   if   it   possesses   a   limited   number   of   member   elements,   and   infinite  
otherwise. (Cohn   1981)    The   cardinality,   or   order,   of   a   finite   set   S   is   the   number   of   members   in   S,  
denoted   |S|   =   n   where   n   ∈   ℕ. (Cohn   1981)    We   can   thus   conceptualize   the   utility   granted   by   a   set's  
definition   to   derive   from   the   fact   that   it   divides   an   aggregate   into   two   distinct   collections:   Those  
objects   which   are   members   of   a   set   and   those   that   are   not.   Due   to   the   generality   of   the   set  
structure,   member   elements   can   represent   any   group   of   abstract   objects   (i.g.   numbers,   colors,  
symbols,   etc…)   We   have   defined   the   convention   and   notation   by   which   we   specify   a   set   S,   an  
individual   element   x,   and   whether   they   possess   the   relation   of   membership,   x   ∈   S,   or   not   x   ∉   S.  
We   now   specify   a   set   in   its   entirety,   explicitly,   implicitly,   and   by   predicate.  

 

We   may   explicitly   define   a   finite   set   through   the   individual   specification   of   its   members. (PM   2015)  
Set   members   are   bounded   by   braces   {   },   in   an   unordered,   comma   delimited   sequence,  

. (PM   2015)    A   set   S   may   express   the   relation   of   equivalence   to   an   explicitly   defined   set e, o, i, a, u}  {      
via   the   equality   operator   =,   S   = . (PM   2015)    Sets   of   considerable   or   possibly   infinite e, o, i, a, u}  {      
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cardinality   become   impossible   to   represent   in   this   way   and   we   must   rely   on   other   conventions   to  
define   membership. (PM   2015)  

 

If   the   elements   in   a   set   have   an   obvious   pattern,   we   can   define   the   set   implicitly   using   ellipsis  
(…). (PM   2015)    Suppose   we   have   an   explicitly   defined   set   S   where   S   =   {1,2,3,4,5,6,7,8,9,10}. (PM   2015)  
An   implicit   definition   might   be   S   =   {1,2,…,10}. (PM   2015)    We   are   meant   to   observe   the   elements  
count   up   uniformly,   and   might   read   this   definition   as:   S   is   the   set   containing   1,   increasing   by   1,  
to   10. (PM   2015)  

 

Often   we   wish   to   define   more   abstract   properties   via   membership   relations. (PM   2015)    An   object  
specified   via   predicate,   is   defined   in   terms   of   a   property   that   it   possesses. (PM   2015)    Whether   an  
object   x   possesses   a   particular   property   P   is   either   true   or   false,   and   so   can   be   the   subject   of   a  
propositional   function   P(x). (PM   2015)    A   set   may   then   be   specified   by   such   a   propositional   function,  
e.g.:   S={x   |   P(x)}. (PM   2015)    This   definition   is   to   be   interpreted   as   S   is   the   set   of   objects   which   satisfy  
the   property   P. (PM   2015)    In   this   context,   we   see   that   the   vertical   bar   symbol   "|"   is   interpreted   to  
mean   "such   that". (PM   2015   par.   5)    The   previous   definition   could   then   be   interpreted   formally   as,   S   is  
the   set   of   all   x,   such   that   P(x)   is   true. (PM   2015)    To   provide   further   example,   the   definition   S   =   {   (x,   y)  
|   x,   y   ∈   ℕ   }   could   be   interpreted,   S   is   the   set   of   all   ordered   pairs   (x,   y)   such   that   x   and   y   are   in  
the   natural   numbers. (PM   2015)    Be   aware,   some   texts   prefer   a   colon   ":"   instead   of   a   vertical   bar. (PM  

2015)  

 

There   are   also   sets   so   common   that   they   are   given   their   own   symbology,   examples   used  
throughout   this   document   include: (Jackson   2017)  

 

The   integers,   denoted   ℤ, {...   ,   −2,   −1,   0,   1,   2,...}   

The   positive   integers,   denoted   ℤ + ,  {1,   2,   3,...}  

The   non-negative   integers   less   than   n,   denoted   ℤ n , {0,   1,   …,   (n-1)}.  
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Section   4.2   :   Operations   on   Sets  
 

Sets   are   often   used   to   model   mathematical   operations.   Generally,   an   operation   is   a   function   , f  
of   the   form   ,   where   is   the   domain   set,   is   the   codomain   set,   and     models   a  → Y  f : X X Y f  
transformation   or   mapping   between   the   two   sets. (Jackson   2017)    An   operation's   domain   is   the   set   for  
which   the   function   is   defined   to   produce   output. (Jackson   2017)    An   operation's   codomain   is   the   set  
within   which   output   is   constrained   to   fall. (Jackson   2017)   

 

An   Injective   or   one   to   one   function,   maps   a   domain   member   to   no   more   than   one   codomain  
member. (Jackson   2017)    An   injection   is   denoted:  

 

. (Jackson   2017) →Y  ∀ x, ∈ X , f (x) (x ) ⇒ x  f : X x′  = f ′ = x′   

 

A   surjective   or   onto   function   maps   domain   members   such   that   at   least   one   corresponds   to   each  
codomain   member. (Jackson   2017)    A   surjection   is   denoted:  

 

. (Jackson   2017) →Y  ∀y∈Y , x∈X , y (x)  f : X ∃  = f  

 

A   bijective   function   is   both   injective   and   surjective. (Jackson   2017)    A   bijection,   also   known   as   a  
one-to-one   correspondence,   defines   an   exact   correspondence   between   its   domain   and  
codomain. (O’Leary   2015)    This   type   of   correspondence   implies   invertibility,   it   can   be   “undone”, (Jackson  

2017   p.   514)    for   any   element     we   can   apply     to   get   and   then   apply   the   inverse   to   recover a ( )  f (a)  f  
a. (Jackson   2017)    Let   function     be   invertible,   then   there   is   a   function   by   which  →Y  f : X →X  f 1− : Y  

. (O’Leary   2015)    A   function   is   invertible   if   and   only   if   it   is   a   bijection. (O’Leary   2015)    This   will   be   of (f (a))  f 1− = a  
much   relevance   in   later   sections,   Table   8   categorizes   these   behaviours.   
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 surjective  non-surjective  

injective  

bijective  

 

injective-only  

non-injective  

surjective-only  

 

general  

Table   8  

 

A   function's   domain   is   composed   of   a   number   of   sets   ,   equal   to   the   operation's   arity ..  S1 × . × Sa  
. (Cohn   1981)    The   arity   is   a   fixed   non-negative   integer   characterizing   the   number   of   operands   for a  

which   the   operation   is   defined   to   produce   output. (Cohn   1981)    Commonly   studied   operations   are  
binary   operations,   of   arity   2,   such   as   addition   or   multiplication,   and   unary   operations,   of   arity   1,  
such   as   additive   inverse   or   multiplicative   inverse. (Cohn   1981)    Application   of   the   term   "arity"   is   rare,  
examples   such   as   "the   addition   operation   has   arity   2"   are   quite   unusual,   convention   suggests  
we   say   "addition   is   a   binary   operation".   

 

A   general   binary   operation   ∘,   on   a   set   ,   is   a   function     which   takes   and   produces S f ,  ∈ S  s t  
,   denoted   . (Jackson   2017)    A   binary   operation   ∘   joins   operands     and   ,   (s, t) ∈ S  f   × S → S  f : S x y ∘y  x

. (Jackson   2017)    Furthermore,   a   binary   operation   ∘,   is   said   to   be   "on"   a   set   S   if   it's   two   domains   and  
codomain   are   S,   ∘ . (Jackson   2017)    In   literature,   binary   operations   are   usually   denoted   by  × S → S  : S  
associated   infix   operators,   rather   than   .   Infix   operation   is   indicated   by   the   sequencing   of (s, t)  f   
operators   between   effected   operands   such   as     ,   ,   or   . (Sedgewick   Wayne   2011) s + t s * t ts  

We   now   define   terminology   for   the   two   traditional   arithmetic   operations   and   their   inverses:  
The   result   of   the   addition   of   a   and   b,   denoted   a   +   b,   is   called   the   sum   of   a   and   b.   
The   result   of   the   subtraction   of   a   and   b,   denoted   a   -   b,   is   called   the   difference   of   a   and   b.   
The   result   of   the   multiplication   of   a   and   b,   denoted   ab   or   a⋅b,   is   called   the   product   of   a   and   b.   
The   result   of   the   division   of   a   and   b,   denoted   a÷b   or   a/b,   is   called   the   quotient   of   a   and   b.   
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Section   4.3   :   Properties   of   Set   Operations  
 

Throughout   this   document   it   will   be   necessary   to   show   an   operation   modeled   in   this   way   has  
certain   structural   properties.   Addition,   subtraction,   multiplication,   and   division   on   the   integers   ℤ,  
are   well-known   binary   operations.   We   will   show   that   these   operations   adhere   to   certain  
fundamental   properties.   

 

For   example,   we   can   differentiate   a   general   binary   function,   and   a   binary   operation   defined   on   a  
set.   A   function   is   formally   defined   as   a   relation   between   sets   that   associates   each   domain  
member   with   a   codomain   member,   .   A   function     is   then   said   to →Y  ∀y∈Y , ∃x∈X , f (x)  f : X   = y f  
be   binary   if   the   domain   is   of   arity   2,   .   We   have ×Y→Z,  ∀z∈Z, ∃x∈X  and y∈Y , f (x, )  f : X    y = z  
seen   that   a   binary   function   where   sets   ,   is   known   as   a   binary   operation.   This X = Y = Z  
difference   is   formally   defined   as   the   property   of   closure. (Cohn   1981)    A   set   is   closed   under   a   given  
operation   if   the   resultant   is   a   member   of   the   set   from   which   its   operands   were   evaluated.   The  
simplest   example   is   the   trivial   set   {0},   containing   only   zero.   We   find   that   the   trivial   set   {0}   is  
closed   under   the   operations   of   addition,   subtraction   and   multiplication,  

.  0  and 0  0  0 + 0 = 0 − 0 = 0 × 0 =   

 

An   example   that   illustrates   this   difference   that   also   has   broader   implications   to   the   material   to  
come,   It   can   be   seen   that   division   of   integers   is   not   a   closed   binary   operation,   ∀a∈ℤ,   ∃b∈ℤ   |   a/b  
∉   ℤ   ,   for   an   integer   ,   there   exists   integer   ,   such   that   division   produces   a   member   of   the a b  
codomain   that   is   not   an   integer   and   therefore   not   a   member   of   the   domain.   In   later   sections   we  
will   see   how   many   of   the   common   operations   in   both   algebra   and   formal   logic   have   interesting  
properties   associated   with   the   relationships   they   specify.   These   properties   include   closure,  
associativity,   comutivity,   distributivity,   and   the   existence   of   identity   and   inverse   elements.  
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Section   5   :   Number   Theory   

5.1   :   Introduction   to   Modular   Arithmetic  
 

This   section   facilitates   the   understanding   of   cryptographic   algorithms   through   the   examination   of  
relevant   mathematical   operations.   Modern   cryptographic   primitives   implemented   in   both  
symmetric   and   asymmetric   ciphers   are   based   on   arithmetic   within   a   finite   number   of   elements.  
Not   only   is   modular   arithmetic   a   common   way   of   performing   arithmetic   in   a   finite   set   of   integers,  
it   is   the   method   implemented   by   the   AES. (Paar   &   Pelzi   2009)    As   such,   understanding   modular  
arithmetic   and   its   application   is   of   fundamental   importance   in   the   context   of   this   report   as   well   as  
in   the   greater   scope   of   modern   cryptographic   study   and   practice.  

 

The   mechanism   of   modular   arithmetic   is   essentially   identical   to   the   method   by   which   we   perform  
clock   arithmetic. (Paar   &   Pelzi   2009)    For   example,   moving   between   the   24-hour   and   12-hour   clock  
systems   is   a   familiar   conversion.   One   takes   the   value   in   the   24-hour   clock   system   and   reduces  
the   hour   by   12.   13:00   in   the   24-hour   clock   system   is   1:00   in   the   12-hour   clock   system,   this  
relationship   of   equality   is   captured   by   the   operation   13   modulo   12   =   1.  

 

We   examine   the   12   hour   system   again,    an   example   of   a   finite   set   of   integers   from   everyday   life:   

Consider   the   hours   on   a   typical   wall   clock.   If   you   keep   adding   one   hour,   you   obtain:  

1h,2h,3h,...,11h,12h,1h,2h,3h,...,11h,12h,1h,2h,3h,...   

Even   though   we   keep   adding   one   hour,   we   never   leave   the   set.  

What   are   the   practical   implications?   Imagine   counting   hours   by   the   week   instead   of   the   modulus  
12   system   used   in   practice.   We   could   no   longer   work   a   9-5   job,   instead   we   now   hold   down   a  
9-17,   33-41,    57-65,   81-89,   105-113   job,   remembering   that   we   have   hours   129-137   and   153-161  
off   for   the   weekend.   As   we   can   see,   arithmetic   with   a   finite   set   has   practical   application.   By  
modular   arithmetic,   we   see   what   is   known   as   a   congruence,   each   represents ≡33≡57≡81≡105  9  
9AM.   This   is   due   to   the   divisibility   of   the   number   of   hours   in   a   week   by   the   number   of   hours  
represented   by   the   wall   clock:   168/12   =   14   

Now   that   we   have   some   experience   with   the   system   by   which   we   have   a   general   way   of   dealing  
with   arithmetic   in   finite   sets,   we   can   formally   examine   and   define   modular   arithmetic.   We   shall  
first   explore   a   common   arithmetic   operation,   division,   which   has   several   properties   that   relate   to  
the   operation   of   modular   arithmetic.   We   will   then   cover   modular   arithmetic   operations  
themselves,   followed   by   the   operations   of   the   AES   which   use   modular   arithmetic   as   a  
component.  
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5.2   :   Divisibility  
 

For   two   integers     and   ,   ,   where   ,     means     such   that   . (Stallings   2017) a b , ∈ℤ  a b  ≠ 0  a ∣b  a c∈ℤ  ∃  ac  b =   

We   then   say     divides     indicating   that     and     is   said   to   be   a   divisor   or   factor   of   . (Stallings a b a
b ℤ  ∈ a b  

2017)    For   two   integers     and   ,   ,   where   and   ,   then   a   does   not   divide   ,   we a b , ∈ℤ  a b  ≠ 0  a a
b ℤ  ∉ b  

write   . (Stallings   2017) ∤b  a  

Examples (i)   −3|18,   since   18   =   (−3)(−6).  (ii)   173|0,   since   0   =   (173)(0).  

 

Properties   of   divisibility   : (Stallings   2017) a, , , , ∈ℤ  ∀ b c x y  

● If   a|1,   then   a   =   ±1  

● If   a|b   and   b|a,   then   a   =   ±b  

● If   a|b,   then   a|bc  

● b|0,   ∀b   ≠   0  

● If   a|b   and   b|c,   then   a|c  

● If   a|b   and   a|c,   then   a|(bx   +   cy)  

 

An   integer   ,   ,   is   a   common   divisor   of     and     if     and   . (Stallings   2017)    A   non-negative c ∈ℤ  c a b ∣a  c ∣b  c  
integer   ,     is   the   greatest   common   divisor   (gcd)   of   two   integers     and   ,   , d ∈ℤ ,  d + a b , ∈ℤ  a b  
denoted   ,   if     is   a   common   divisor   of     and   ;   and   whenever     and   ,   then  gcd(a, b)  d =   d a b ∣a  c ∣b  c  

. (Stallings   2017)    Equivalently,     is   the   largest   positive   integer   that   divides   both     and   ∣d  c cd(a, b)  g  a b
. (Stallings   2017)    As   we   shall   see,   numbers   that   are   related   by   a   gcd   of   1,   ,   have   great cd(a, b)  g  = 1  
importance   to   the   implementation   of   AES   as   well   as   many   fields   related   to   number   theory. (Paar   &  

Pelzi   2009)    For   ,   if     then     and     are   said   to   be   relatively   prime   or , ∈ℤ  a b cd(a, b)  g  = 1 a b  
coprime. (Stallings   2017)  

Euler's   totient   function   is   defined   as   the   number   of   positive   integers   less   than     that   are n  
relatively   prime   to   . (Stallings   2017   p.   65)     The   number   of   integers   ,   where n  ∣k∣  x =  

.   The   integer     is   equal   to   the   cardinality   of   ,   ,   where     is k { y ∣ gcd(y, n) 1, 1 ≤ y ≤ n}   =   =   x k k∣  ∣ k  
the   set   of   integers     for   which   the   greatest   common   divisor   is   equal   to   1,   . (Stallings y cd(n, y)  g  = 1  

2017)    This   function   is   denoted   using   the   Greek   letter   ϕ,   it   is   also   known   as   Euler's   phi   function. (Paar  

&   Pelzi   2009   p.   165)    We   will   represent   the   set   of   integers   coprime   to     as   . n (n)  ϕ  

An   integer   ,   ,   where     is   greater   than   ,   ,   is   prime   if,   for   all   positive   integers   , p  ∈ ℤ  p p  1  1  p >  n  
,   less   than   ,     the   only   positive   divisors   are     and   ,   . (Stallings   2017) ∈ℤ  n + p  1 < n < p  1 p cd(p, n)  g  = 1  

Otherwise,     is   composite. (Stallings   2017)    ℙ   is   the   set   of   all   primes   {2,   3,   5,   7,   11,   ...}. (Stallings   2017)    If   p   is p  
prime     and   ,   then   either     or   . (Stallings   2017)    For   n∈ℙ,   ϕ(n)   =   {0,   1,   …,   (n-1)}   as   prime ∈ℙ  p ∣ab  p ∣a  p ∣b  p  
numbers   are   coprime   to   all   other   integers   by   definition. (Stallings   2017)  
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Divisibility   Theorem (Stallings   2017)  

 

If     and   ,   then   unique   integers     and     exist,   with   ,   such   that   . , ∈ℤ  a d  ≠ 0  d q r  ≤ r  0 < d ·q  a = d + r  

 

●   is   called   the   divisor d  

●   is   called   the   quotient q  

●   is   called   the   dividend a  

● is   called   the   remainder r  

 

By   example, , ,   we   find   and     so   that   . 7  a = 1  d = 3 q = 5  r = 2 7  1 = 3 * 5 + 2  

 

If     for   integers     and   ,   the   division   theorem   reveals   a   relationship.   We   then   say     divides  r = 0 a d d  
  or   that     is   divisible   by   .   For   any   value   of   ,   we   could   create   a   set   of   integers   for   which a a d d  

their   remainder   .   This   set   would   then   be   the   infinite   set   of   multiples   of   ,   an   abstraction  r = 0 d  
with   which   most   are   familiar   and   can   envision   for   a   given   integer   . d   

 

For   example   is   ,   is   the   set   . d = 5 ..., 0, , 0, 5, 10, 15...}  {  − 1  − 5      
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5.3   :   Congruence   Relation  
 

We   now   think   about   value   sets   which   share   the   same   remainder   when   divided   by   ,   where   the d  
remainder   .   For   any   given   divisor   ,   we   have   a   remainer   range   of   ,   and   one   such  ≠ 0  r d  ≤ r  0 < d  
infinite   value   set   for   each   member   of   this   range,   where   all   member   values   are   said   to   be  
congruent   to   their   entire   set. (Stallings   2017)    This   establishes   a   congruence   relation   on   the   integers   ℤ,  
represented   by   the   modulus   operator. (Stallings   2017)  

 

For   a   positive   integer   ,   two   integers     and     are   said   to   be   congruent   modulo   ,   if     and   m a b m a b  
have   the   same   remainder   when   divided   by   . (Stallings   2017) m  

 

For   and   ,     is   congruent   to     modulo     iff   , , , ∈ℤ  a b p q ∈ℤ  m + a b m q·m) r b p·m)  a − ( =  =  − (  

 

Equivalently,   if   the   difference   of     and   b   is   divisible   by   m,   i.e.   (a   −   b)   is   an   integer   multiple   of   m, a  
then     and   b   are   congruent   modulo   m. (Stallings   2017) a  

 

  and   ,     is   congruent   to     modulo     iff   a, ∈ℤ  ∀ b ∈ℤ  m + a b m  ∣ (a − b)  m  

i.e. ∃k∈ℤ, a − b km)  (  =   

 

,     and ,   such   that     divides a, , ∈ℤ  ∀ m r q∈ℤ  ∃  ≤ r  0 < m m a − r  

 

as     divides ,   we   write and   m   is   called   the   modulus. (Stallings   2017)    We   may   then m a − r  ≡ r (mod m)  a  
denote   the   remainder   ,   . (Stallings   2017) r  mod m r  a =   

 

The   expression     is   called   a   congruence   relation,   read:   a   is   congruent   to   b   modulo  ≡ b (mod m)  a  
m. (Paar   &   Pelzi   2009)    Let   it   be   known   that   some   literature   uses   =   instead   of   ≡   to   denote   congruence.  
We   must   also   be   aware   of   when   the   parentheses   enclosing   are   omitted,   as   this   denotes mod m)  (  
the   modulo   operation   ,   expressing . (Stallings   2017)    The   integer     is   known   as  mod m  a = b  ≤ a  0 < m m  
the   modulus   of   the   congruence. (Stallings   2017)  

 

We   may   rewrite   a   congruence   relation   ,   explicitly   showing   its   relationship   with mod m) a ≡ km  ( + b  
division. (Stallings   2017)    We   can   see   that   b   is   not   necessarily   the   remainder,   b   can   be   any   member   of  
a   set   of   infinite   values   of   a   given   congruence   relation,   as   previously   stated.   Generally, 
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  declares   that   a   and   b   have   the   same   remainder   when   divided   by   m. (Stallings   2017)    That  ≡ b mod m  a  
is,     and     where     is   the   common   remainder. (Stallings   2017)    By   taking  pm  a =  + r mb = q + r  ≤ r  0 < m  
the   difference   of   these   expressions   and   setting     we   find:   . (Stallings   2017)  − q  k = p ma − b = k  

 

Example  

  because ,   which   is   a   multiple   of   12,   or,   equivalently,   because   both 8 ≡ 14 (mod 12)  3 8 − 14 24  3 =   
38   and   14   have   the   same   remainder   2   when   divided   by   12.  
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5.4   :   Modular   Arithmetic   
 

The   (mod   n)   operator   maps   all   integers   into   the   set   of   integers   {0,   1,   …   ,   (n   -   1)}. (Stallings   2017)    We  
can   perform   arithmetic   operations   in   a   finite   set   via   modular   arithmetic.   

 

Properties   of   Modular   arithmetic: (Stallings   2017)  

[(a   mod   n)   +   (b   mod   n)]   mod   n   =   (a   +   b)   mod   n  

[(a   mod   n)   -   (b   mod   n)]   mod   n   =   (a   -   b)   mod   n  

[(a   mod   n)   *   (b   mod   n)]   mod   n   =   (a   *   b)   mod   n  

 

If   a   and   b   are   congruent   modulo   m,   then   they   are   of   equivalent   value   and   produce   equivalent  
results   as   operands   during   modular   arithmetic   under   m. (Stallings   2017)    While   any   continuous  
sequence   of   m   numbers   would   technically   be   of   equal   value   and   be   able   to   represent   the   set   of  
modular   arithmetic   under   m,   convention   and   simplicity   dictate   the   first   m   natural   numbers,   {0,   1,  
2,   ...,   (m-1)}.   All   other   numbers   are   then   congruent   to   and   can   be   expressed   as   a   member   of  
this   set   for   the   purposes   of   modular   arithmetic.   Congruence ,   like   equality   ,   is   a   type   of ≡)  ( =)  (  
equivalence   relation. (Jackson   2017)    We   define   the   set   ℤ n    to   be   the   set   of   potential   integer   remainders  
modulo   n,   ℤ n    =   {0,   1,   ...,   (m   −   1)}.   This   is   also   the   set   produced   by   operator   (mod   m).   |S|   denotes  
cardinality,   and   is   equal   to   the   number   of   elements   in   the   set   S,   thus   |ℤ n |   =   n. (Jackson   2017)   

 

ℤ n    can   be   equipped   with   an   additive   and   multiplicative   binary   operations,   +   and   *. (Stallings   2017)  
Addition   and   multiplication   in   ℤ n    function   similar   to   addition   and   multiplication   as   defined   over  
the   integers   ℤ,   except   that   the   results   are   reduced   modulo   n.   

 

Suppose   we   must   compute   14*19   in   ℤ 15 ,   given   that   in   ℤ. 4 19 266  1 *  =    

We   reduce   266   modulo   15: ,   so ,   and   hence   in   ℤ 15 . 66 5 7 1  2 = 1 * 1 + 1 66 mod 15 1  2 ≡ 1 4 9 1  1 * 1 = 1  

 

We   consider   the   set   ℤ 9    =   {0,1,2,3,4,5,6,7,8}   in   which   arithmetic   is   seemingly   regular   for   results  
smaller   than   9:     .   But   what   about   8+4?   As   with   the   previous   example,   we  2 * 3 = 6  8  4 + 4 =   
perform   integer   arithmetic   then   find   the   remainder   with   respect   to   the   modulus,   9.   As   8+4   =   12,  
and   (12-3)/9   =   1,   the   remainder   3   is   said   to   be   congruent   to   8   +   4   modulo   9.  
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Example:   For   every   given   modulus   m   and   integer   a,   there   are   (infinitely)   many   valid  
remainders. (Paar   &   Pelzi   2009)    Assuming   we   would   like   to   reduce   13   modulo   8   there   are   infinitely   many  
congruent   results:  

 

  13   ≡    5    (mod   8),     5   is   a   valid   remainder   since   8|(13−5)  

  13   ≡   21   (mod   8),   21   is   a   valid   remainder   since   8|(21−5)  

  13   ≡   −3   (mod   8),   −3   is   a   valid   remainder   since   8|(−3−5)  

 

There   is   a   system   behind   this   behavior.   The   set   of   numbers   {...,−19,−11,−3,5,13,21,29,...},   all   of  
which   are   congruent,   form   what   is   called   an   equivalence   class.   

 

There   are   eight   other   equivalence   classes   for   the   modulus   9:  

 

0   (mod   9)   {...,−18,−9,   0,   9,18,...}   

1(mod   9)   {...,−17,−8,   1,   10,19,...}   

…   

8   (mod   9)   {...,−10,−1,   8,   17,26,...}  

 

Generally,   each   modulus   has   m   equivalence   classes   {0,   …,   m-1}.   By   the   9-5   example,   it   is  
shown   how   a   timekeeping   system   becomes   less   practical   as   the   size   of   the   representative   set  
grows,   i.e.   the   longer   it   takes   to   return   to   0.   Difficulty   is   experienced   upon   conversion   between  
the   set   of   hours   on   a   wall   clock   12,   and   the   set   of   hours   in   a   week,   168.   Generally,   numbers  
become   increasingly   difficult   to   compute   as   their   digits   grow.   The   modulus   operator   can   assist  
us   in   reducing   intermediate   results   to   simplify   future   calculations   by   reducing   the   size   of   the  
numbers   to   be   operated   upon. (Paar   &   Pelzi   2009)    Ultimately,   for   a   given   modulus   m,   it   does   not   matter  
which   equivalence   class   element   we   choose   for   computation. (Paar   &   Pelzi   2009)    We   show   this   using  

and   two   modular   exponentiation   methods.  (mod 7)  38   

 

The   first   approach   is   a   straight   forward   eight   multiplication   operations   where   by   we   obtain   a  
large   intermediate   result   of   6561   ,   before   a   modular   reduction   that   ensures 561 ≡ 2 (mod 7)  38 = 6  
our   final   result   is   no   larger   than   6,   since   . (Paar   &   Pelzi   2009) 561 37  6 = 9 × 7 + 2  

 

For   the   second   approach   we   perform   two   partial   exponentiations:     then 1 1  38 = 34
* 34 = 8 * 8  

replace   the   intermediate   results   81   with   a   member   of   its   equivalence   class,   the   smallest   positive  
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member   modulo   7   in   the   class   is   4   , 81 11 7 )  ( =  *  + 4  
. (Paar   &   Pelzi   2009) 1 1  6 ≡ 2 (mod 7)  38 = 34

* 34 = 8 * 8 = 4 * 4 = 1  

 

For   the   first   method,   dividing   6561   by   7   is   mentally   challenging,   and   an   inefficient   use   of  
computational   resources.   The   second   method's   operands   never   become   larger   than   two   digits.  
Generally,   for   computations   with   a   fixed   modulus,   those   common   in   cryptography,   it   is  
computationally   advantageous   to   apply   the   modulo   reduction   to   keep   operands,   and   their  
results,   small   as   we   are   free   to   choose   the   class   element   that   results   in   the   easiest  
computation. (Paar   &   Pelzi   2009)    This   property   of   equivalent   classes   has   major   practical   implications   as  
operations   in   many   practical   public-key   schemes   rely   on   exponentiation   of   the   form ,  x  mod me   
where   x,e,m   can   be   as   great   as   2048   bit   integers. (Paar   &   Pelzi   2009)  
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5.5   :   Exclusive   OR  
 

Pre-modern   cipher   systems   were   operated   by   hand,   making   them   tedious   and   prone   to   human  
error.   With   the   development   of   rotor   cipher   machines   during   World   War   I (Van   Tilborg   &   Jajodia,   2011)    and  
the   invention   of   computers   during   World   War   II (Van   Tilborg   &   Jajodia,   2011) ,   the   application   of   automated  
cryptographic   operations   immensely   more   complex   than   the   ancient   hand   computed   methods  
were   made   possible.   Due   to   cryptology's   crucial   role   in   the   outcome   of   both   world   wars,   the  
continuous   development   of   electromechanical   devices,   and   the   invention   of   digital   computers,  
the   cryptographic   methods   and   their   applications   have   progressed   in   capability,   accessibility,  
and   prevalence.   Modern   applications   implement   encryption   operations   as   software   programs,  
rather   than   pencil   and   paper,   they   instead   use   binary   data   files   to   represent   input   plaintext   and  
key   material,   as   well   as   for   recording   of   the   output   ciphertext   before   storage   or   transmission.  
This   implementation   method   has   been   the   most   effective   for   the   automation   of   data   entry   and  
processing,   particularly   for   algorithmic   application   of   cryptographic   operations.   Such   as   the  
mixing   function   used   by   the   one   time   pad.   

 

This   mixing   operation   is   the   exclusive   OR,   a   logical   operation   that   outputs   true   only   when   inputs  
differ   in   truth   value,   i.e.   one   is   true,   the   other   false. (Van   Tilborg   &   Jajodia,   2011)    The   Inclusive-or   operation  
results   true   when   either   or   both   inputs   are   true. (Van   Tilborg   &   Jajodia,   2011)    We   shall   represent   the  
exclusive-or   function   by   XOR   or   ⨁.   When   using   binary   values   for   true   (1)   and   false   (0)   exclusive  
or   functions   by   comparing   two   bits,   returning   1   if   the   two   bits   differ   and   0   if   they   are   the  
same. (Paar   &   Pelzi   2009)    This   is   equivalent   to   addition   modulo   2   or   performing   addition   in   base   2  
without   carrying,   seen   by   Table   9   to   the   left. (Paar   &   Pelzi   2009)    This   operation,   known   as   a   bitwise  
XOR,   is   defined   to   function   on   equal   length   bit   patterns   by   transforming   corresponding   bits. (Paar   &  

Pelzi   2009)    Example:   1110 2    XOR   1001 2    =   0111 2   

 

XOR  =  

1  1  0  

1  0  1  

0  1  1  

0  0  0  

Table   9  
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The   exclusive   or   operation   has   several   uses: (Paar   &   Pelzi   2009)  

● Determines   the   equality   of   two   individual   bits  

● Discretionary   bit   toggling,   alters   a   bit   xored   with   1   and   retains   a   bit   xored   with   0.  

● A   series   of   XORs, ,   is   true   for   an   odd   number,   false   for   an   even   number,   of ⨁b⨁…⨁z  a  
true   values  

 

The   XOR   operation   plays   a   major   role   in   modern   cryptography   and   will   be   used   many   times   in  
the   remainder   of   this   document. (Paar   &   Pelzi   2009)    On   its   own,   exclusive-or   is   used   as   a   cryptographic  
mixing   function. (Paar   &   Pelzi   2009)    For   a   simple   example   of   exclusive-or's   relevance,   we   xor   a  
pseudorandom   bit   stream     with   a   message   bit   stream     to   produce   an   encrypted   bit   stream   r m c
,   ,   where     is   the   ith   bit   of   a   given   stream. (Paar   &   Pelzi   2009)    To   decrypt   this   mixing   function ⨁m  ci = ri i i  
and   restore   the   original   message   bit   stream   ,   we   xor   the   previous   pseudo-random   bit   stream m  

  with   the   encrypted   bit   stream   ,   where   i   is   the   ith   bit   of   a   given r c r ⨁c ⨁r ⨁m ⨁m   i i = ri i i = 0 i = mi  
stream. (Paar   &   Pelzi   2009)  

 

Why   is   the   XOR   operation   used?   Let   us   consider   the   encryption   of   the   plaintext   bit   ,   if   xi  xi = 0  
is   dependent   on   the   key   bit   .   The   ciphertext   value   ,   is     if     =   0   or     if     =   1.   If ki yi  yi = 0 ki  yi = 1 ki  
the   key   bit     behaves   perfectly   randomly,   i.e.,   it   is   unpredictable,   it   has   exactly   a   50%   chance ki  
to   have   the   value   0   or   1,   then   both   possible   ciphertexts   also   occur   with   a   50%   likelihood.  
Likewise,   for   plaintext   bit   ,   depending   on   the   value   of   the   key   stream   bit   ,   there   is   equal  xi = 1 ki  
chance   that   the   ciphertext     if     =   1   or     if     =   0.    By   observing   an   output   value,  yi = 0 ki  yi = 1 ki  
there   is   exactly   a   50%   chance   of   any   input   bit   value. (Paar   &   Pelzi   2009)    The   XOR   operation   preserves  
randomness,   meaning   that   a   random   bit   XORed   with   a   non-random   bit   will   produce   a   random  
result. (Paar   &   Pelzi   2009)    Exclusive-or   is   heavily   used   in   block   ciphers   such   as   AES   (Rijndael)   and   in  
block   cipher   implementation   and   modes   of   operation.  
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5.6   :   Polynomial   Arithmetic  
 

We   shall   represent   a   polynomials   as   mathematical   expressions   of   the   form   

 

x  a x  ... a  an n +  n 1−
n 1− +  +  0  

 

The   highest   exponent   of   x   is   the   polynomial's   degree (Dong   2010) ,   for   example,   the   degree   of  
  is   7.   The   values   a n ,   a n-1 ,   ...   ,   a 0    are   called   coefficients. (Dong   2010) x  x7 + 2 4 + 6  

 

We   add   and   subtract   polynomials   by   operations   between   their   like   terms,   those   with   the   same  
degree.  

 

Polynomial   Addition: (Dong   2010)  

(x 5 +3x 3 +4)+(6x 6 +4x 3 )   =   6x 6    +   x 5    +   7x 3    +   4  

 

 

Figure   7  

 

Polynomial   Subtraction: (Dong   2010)  

(x 5 +3x 3 +4)+(6x 6 +4x 3 )   =   -6x 6 +x 5 -x 3 +4  

 

 

Figure   8  
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We   can   also   multiply   and   divide   polynomials   by   recording   how   each   term   in   the   first   polynomial  
effects   each   term   in   the   second   polynomial,   then   summing   those   intermediate   results.  

Polynomial   Multiplication: (Dong   2010)  

(x 5    +   3x 3    +   4)*(6x 6    +   4x 3 )   =   6x 11    +   18x 9    +   4x 8    +   36x 6    +   16x 3   

 

 

 

Figure   9  

 

 

Polynomial   Division: (Dong   2010)  

(6x 11    +   18x 9    +   4x 8    +   36x 6    +   16x 3 )   ÷   (x 5    +   3x 3    +   4)   =   6x 6    +   4x 3   

 

 

 

Figure   10  
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A   dividend   not   perfectly   divisible   by   the   offered   divisor   is   represented   by   a   polynomial  
remainder. (Dong   2010)  

 

Polynomial   Division   With   Remainder: (Dong   2010)   

(3x 6    +   7x 4    +   4x 3    +   5)   ÷   (x 4    +   3x 3    +   4)   =    3x 2    -   9x   +   34   with   remainder   -98x 3    -   12x 2    +   26x   -131  

 

 

Figure   11  
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5.7   :   Matrix   Multiplication   
 

A   matrix   is   denoted   by   bold   capital   letters,   A,   B,   C   as   shown   by   Figure   12   below. (O’Leary   2015)    We  
then   indicate   individual   members   of   matrix   A   by   index   notation   such   that   member   then ai j  
expresses   the   matrix   entry   on   the   ith   row   and   jth   column. (O’Leary   2015)   

 

Matrix   multiplication   is   then   performed   with   A,   an   n×m   matrix,   and   B,   a   m×p   matrix,   such   that  
the   matrix   product   C,   C   =   AB,   is   an   n×p   matrix. (O’Leary   2015)  

 

 

Figure   12  

 

Each   product   matrix   entry     is   the   result   obtained   by   individually   multiplying   an   entry   of   the   ith ci j  
row   of   A   and   the   jth   column   of   B,   then   summing   these   m   products. (O’Leary   2015)  

 

  for   i   =   1,   ...,   n   and   j   =   1,   ...,   p. a b b bci j =  i 1 1 j + … + ai m m j = ∑
m

k=1
ai k k j  

b b .. b  c11 = a11 11 + a12 21 + . + a1m m1  

b b .. b  ci1 = ai1 11 + ai2 21 + . + aim m1  

b b .. bc1j = a11 1j + a12 2j + . + a1m mj  

...  

b b .. bcij = ai1 1j + ai2 2j + . + aim mj  

 

Thus   the   product   AB   is   defined   if   and   only   if   the   number   of   columns   in   A   equals   the   number   of  
rows   in   B. (O’Leary   2015)    Figure   13,   below,   depicts   the   method   of   matrix   multiplication   for   two  
members   of   matrix   C,   the   product   of   the   two   matrices   denoted   by   the   capital   letters   A   and   B   in  
Figure   14,   below.   This   diagram   shows   how   each   intersection   in   the   product   matrix   corresponds  
to   a   combination   between   a   row   of   A   and   a   column   of   B.  
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Figure   13  

 

 

 

Figure   14  

 

The   values   indicated   by   Figures   13,   14   above   are   solved   for:  

 

b + b  x1 2 = a1 1 1 2 a1 2 2 2  

b + b  x3 3 = a3 1 1 3 a3 2 2 3  

 

Traditionally   matrix   entries   are   numbers,   but   they   may   be   any   kind   of   mathematical   objects   for  
which   an   addition   and   multiplication   operations   are   associative,   the   addition   is   commutative,   and  
the   multiplication   is   distributive   with   respect   to   the   addition. (O’Leary   2015)   
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Section   6   :   Abstract   Algebra  

6.1   :   Algebraic   Structure  
 

Now   that   we   have   some   understanding   of   set   theory,   its   notation,   and   the   creation   of   binary  
operations,   we   are   able   to   progress   toward   the   necessary   structures   and   operations   of   the   AES.  
The   mathematical   constructs   implemented   and   manipulated   by   AES   are   sets   with   defined  
structure.   Through   selective   abstraction,   mathematicians   have   defined   algebraic   structures   now  
integral   to   both   pure   mathematics   and   the   applied   sciences.   Almost   all   systems   studied   are  
sets,   abstract   algebra   in   particular,   is   based   on   set   theory   in   one   form   or   another. (Jackson   2017)  

 

This   section   concerns   those   properties   that   define   the   algebraic   structures   which   mathematically  
model   the   mechanisms   of   the   AES.   We   shall   see   how   the   definition   of   a   binary   operation   and  
the   relation   it   creates,   affects   the   set   for   which   it   is   defined.   We   begin   from   the   most   basic  
structure,   a   general   set   for   which   a   binary   operation   is   defined,   then   progress   through   the  
individual   properties   necessitated   by   the   operations   of   the   AES   and   define   the   algebraic  
structures   which   result   as   they   increase   in   complexity.   This   incremental   addition   of   properties  
creates   a   hierarchy   of   algebraic   structures.   Groups,   rings,   and   fields   constitute   the   basic  
hierarchy   of   abstract   algebraic   objects   and   are   required   for   the   definition   and   understanding   of  
the   AES. (Sedgewick   Wayne   2011)    "The   abstract   formalization   of   the   group   axioms,   detached   as   it   is   from  
the   concrete   nature   of   any   particular   group   and   its   operation   ...   allows   entities   with   highly  
diverse   mathematical   origins   in   abstract   algebra   and   beyond   to   be   handled   in   a   flexible   way  
while   retaining   their   essential   structural   aspects.   The   ubiquity   of   groups   in   numerous   areas  
within   and   outside   mathematics   makes   them   a   central   organizing   principle   of   contemporary  
mathematics". (Bello   Danjuma   Simon   2018   p.   54)    The   approach   adopted   by   this   document   is   known   as   naïve  
set   theory,   by   which   we   define   set   relations   and   focus   on   their   functional   properties   without  
concern   for   those   unusual   circumstances   under   which   exceptions   occur. (Jackson   2017)    In   practice,  
the   definitions   and   functionality   outlined   by   this   document   do   not   involve   such   exceptions. (Jackson  

2017)   

 

An   algebraic   structure   is   a   collection   of   finitary   operations   on   a   set   S,   also   called   an   algebra. (Cohn  

1981)    The   set   S   is   then   referred   to   as   the   underlying   set. (Cohn   1981)    A   finitary   operation   is   an  
operation   of   finite   arity,   that   is   an   operation   of   limited   arguments   or   operands. (Cohn   1981)    An  
algebraic   structure   is   denoted     where   S   represents   a   set   and   ∘   represents   a   properly S, )  ( ∘  
defined   operation. (Cid   Murphy   Robshaw   2006)    This   document   shall   use   the   symbol   '∘'   to   generalize   any  
binary   operation.   We   can   represent   more   complex   algebraic   structures   as   ordered   tuples:  

  where   S   is   a   set   which   has   one   or   more   binary   operations   ∘ i    ,   1≤   i   ≤   n. (Cid   Murphy S, , , .., ∘ )  ( ∘1 ∘2 .  n
 

Robshaw   2006)  
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Closure  

An   algebraic   structure   (S,∘)   is   closed   under   ∘   iff   (Paar   &   Pelzi   2009) (a, ) ∈ S×S  ∘ b ∈ S  ∀ b : a  

 

In   general,   we   may   state   that   S   is   closed   under   ∘,   or   that     is   closed,   if   the   binary   operation S, )  ( ∘  
∘,   combines   any   two   elements   a,b   ∈   S,   by   some   mechanism,   denoted     or   ,   such   that   their ∘b  a ba  
result   is   always   a   member   of   S. (Paar   &   Pelzi   2009)    A   set   S,   equipped   with   a   binary   operation   ∘,   is   called  
a   magma   if   (S,   ∘)   is   closed,   S   ∘   S   →   S. (Jackson   2017)    As   the   binary   operations   which   define   set  
structure   are   closed   by   definition,   the   magma   will   serve   as   our   most   basic   example   of   an  
algebraic   structure. (Jackson   2017)  

 

Associativity  

A   binary   operation   ∘,   on   a   set   S,   is   associative   iff   (Paar   &   Pelzi   2009) a, , ∈ S (a∘b)∘c a∘(b∘c)  ∀ b c =   

 

A   set   S,   equipped   with   a   binary   operation   ∘,   is   called   a   semigroup   if     is   closed   and S, )  ( ∘  
associative. (Jackson   2017)   

 

Commutative  

A   binary   operation   ∘,   on   set   S,   is   commutative   iff   (Paar   &   Pelzi   2009) a,  ∈ S a ∘ b b ∘ a  ∀ b =   

 

If   semigroup     is   commutative   it   is   known   as   an   abelian   semigroup. (Jackson   2017) S, )  ( ∘  

 

Identity  

An   element   e   is   the   Identity   element   of   set   S,   iff   ∀a   ∈   S   ∃   e   ∈   S   e   ∘   a   =   a   ∘   e   =   a    (Paar   &   Pelzi   2009)  

 

The   element   e   is   said   to   be   the   identity   element   of,   or   neutral   element   with   respect   to,   ∘. (Jackson  

2017)    An   identity   element,   when   combined   with   a   set   member,   with   respect   to   a   binary   operation,  
results   in   an   identical   value   as   that   set   member. (Paar   &   Pelzi   2009)    The   identity   of   addition   is   0   and   the  
identity   of   multiplication   is   1. (Paar   &   Pelzi   2009)    A   set   S,   equipped   with   a   binary   operation   ∘,   is   called   a  
monoid   if     is   closed,   associative,   and   has   an   identity   element   e. (Jackson   2017)    The   monoid S, )  ( ∘  
therefore   is   characterized   by   specification   of   the   triple   . (Jackson   2017)    We   begin   to   see   a S, , e)  ( ∘   
pattern,   a   monoid   is   a   semigroup   with   an   identity   element   or   a   magma   with   associativity   and  
identity.   
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6.2   :   Groups  
 

Invertible  

Binary   operation   ∘   on   set   S   with   identity   e   is   invertible   iff (Paar   &   Pelzi   2009) a∈S ∃a , a∘a ∘a  ∀ 1−  1− = e = a 1−  

 

An   inverse   element,   with   respect   to   a   binary   operation,   can   reverse,   or   invert   the   effect   of  
combination   with   a   corresponding   element,   this   is   known   as   inversion. (Paar   &   Pelzi   2009)    Inversion  
manifests   as   negation   under   addition,   and   the   reciprocal   under   multiplication. (Paar   &   Pelzi   2009)  
Extending   this   structural   construct,   a   monoid   in   which   each   element   has   an   inverse   is   a   group.   A  
set   G,   equipped   with   a   binary   operation   ∘,   is   called   a   group   if     satisfies   the   conditions   of G, )  ( ∘  
closure,   associativity,   identity   and   invertibility. (Jackson   2017)    These   four   conditions   are   called   the  
group   axioms: (Jackson   2017)  

 

Group  

(G,   ∘)   is   a   group   iff   if   ∘   satisfies   closure,   associativity,   identity   and   invertibility (Paar   &   Pelzi   2009)  

 

Closure   : a, ∈G ∣ a∘b∈G  ∀ b  

  Associativity   : a, , ∈G ∣ (a∘b)∘c a∘(b∘c)  ∀ b c =   

  Identity   element   : e∈G, a∈G ∣ e∘a a∘e a  ∃ ∀ =  =   

  Inverse   element   : a∈G, a ∈G ∣ a∘a  a ∘a e  ∀ ∃ 1− 1− =  1− =   

 

The   simplest   possible   construct   that   satisfies   all   of   the   group   axioms   is   the   trivial   group,   0}  G = {
,   the   set   consisting   of   a   single   element. (Jackson   2017)    There   is   only   one   possible   binary   operation  
that   can   be   defined   on   this   set,   and   only   one   ordered   pair   of   elements   upon   which   it   can  
operate,   with   only   a   singular   result   that   can   be   produced: . (Jackson   2017)    Brief   verification ∘0 0  0 =   
shows   that   this   operation   satisfies   all   of   the   group   axioms:   0   is   the   identity   element,   it’s   its   own  
inverse,   and   the   operation   is   shown   to   be   closed   and   associative   over   the   elements   of   the  
set. (Jackson   2017)    One   of   the   most   familiar   groups   is   the   set   of   integers   ℤ,   with   the   operation   of  
arithmetic   integer   addition. (Jackson   2017)    The   following   properties   of   arithmetic   addition   on   the  
integers   serve   as   an   example   for   a   set   and   operation   which   satisfy   the   group   axioms: (Cid   Murphy  

Robshaw   2006)   
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●   For   any   two   integers   a   and   b,   the   sum     is   also   an   integer.   Thus, a, ∈ℤ, (a )∈ℤ  ∀ b  + b a + b  
the   integers   are   closed   under   addition.  

●   Adding     to   ,   and   their   result   to     is   equal   to   adding a, , ∈ℤ, (a )  a b )  ∀ b c  + b + c =  + ( + c a b c  
  to   the   result   of   .   Thus   addition   under   the   integers   is   associative. a b + c  

●   For   any   integer   a,   adding   it   to   zero   or   vice   versa   returns   the a∈ℤ, 0  a  ∀  + a =  + 0 = a  
same   integer.   Zero   is   thus   the   identity   element   of   addition.  

● For   every   integer   ,   there   is   an   integer     such   that   its a∈ℤ, ∃b∈ℤ, a  b  0  ∀   + b =  + a =  a b  
addition   to     results   in   .   The   integer   is   then   denoted   ,   the   inverse   of   . a  0 b − a a  

 

The   integers,   together   with   the   operation   +,   form   a   mathematical   object   belonging   to   a   broad  
class   sharing   similar   structural   characteristics.   To   appropriately   understand   and   classify   these  
structures,   their   definition   is   developed   by   the   group   axioms.  

 

Any   binary   operation   which   preserves   the   above   properties,   with   respect   to   some   set   ,  G  
represents   a   group   over   .   As   it's   properties   dictate   the   set's   algebraic   structure,   the   associated  G  
operation   is   called   the   law   of   . (Cohn   1981)    Again,     is   called   the   underlying   set   of   the   group    G  G G, )  ( ∘
. (Cohn   1981)    Often   the   group's   underlying   set     is   used   as   a   short   name   for   the   group     as   the  G G, )  ( ∘  
operation   can   be   discerned   via   context. (Jackson   2017)    When   this   is   the   case,   a   usage   of     is G, )  ( ∘  
instead   denoted   by   . (Jackson   2017)  G  

 

We   have   required   the   existence   of   unique   identity   elements   and   a   unique   inverse   for ∈S  e g 1−  
each   element   . (Jackson   2017)    We   now   prove   that   the   identity   element     of   a   group     is   unique. ∈S  g e S   

 

That   is,   for   any   other   element     satisfying   condition   of   Invertibility,   there   exists   an   identity ∈S  g  
element     such   that . (Jackson   2017) ∈S  e g∈S, e∘g g∘e g  ∀  =  =   

 

Proof  

Suppose     also   satisfies   the   identity   condition,   that   for   any   element   ,   we   have   ∈S  f ∈S  g ∘g  f = g
and   .   In   particular,   .   But   since     is   also   an   identity,   we   have     as   well.   So ∘f  g = g ∘e  f = e e ∘e  f = f  

. (Jackson   2017) f = e  

 

Any   element     of   a   group     has   a   unique   inverse   .   That   is,   for   any   other   element   g  G g 1− g  
satisfying   condition   (IV),   we   have   (Jackson   2017)  g  g′ =  1−  
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Proof  

Suppose   that   and     are   two   inverses   for   an   element .   Then .   By g 1−  g′ ∈G  g  ∘ g g  ∘ g e  g 1− =  ′ =   
condition   III   we   have     as   well.   Thus:  g∘g 1− = e  e ∘g  (g ∘g)∘g  g∘(g∘g ) g∘e g  g 1− =  1− =  ′ 1− =  1− =  =  

(Jackson   2017)  

 

Hence   the   identity   element   and   the   inverse   elements   are   shown   to   be   unique.  

 

The   order   of   a   group   (G,   ∘),   often   denoted   |G|,   is   the   cardinality   of   the   set   G. (Jackson   2017)    If   the  
order   of   (G,   ∘)   is   finite,   we   say   that   G   is   a   finite   group. (Jackson   2017)    Similarly,   we   say   that   an   element  
g   ∈   G   has   finite   order   if   there   exists   a   positive   integer   k   such   that   g   ∘   ...   ∘   g   =   g k    =   e,   the   identity  
element. (Jackson   2017)    In   this   case,   the   least   such   integer   k   is   called   the   order   of   g   and   is   denoted   by  
or   |g|,   thus   the   inverse   element    g -1    =   g (|g|   -   1) . (Jackson   2017)    Let   g   be   an   element   of   a   group   G   with  
identity   element   e.   Then   the   order   of   g,   denoted   |g|,   is   the   smallest   positive   integer   n   such   that  
g^n   =   e.   If   no   such   integer   n   exists,   g   is   said   to   have   infinite   order. (Jackson   2017)    For   a   finite   group   G,  
the   order   of   any   element   divides   the   order   of   the   group   G. (Jackson   2017)   

 

In   the   case   of   ℤ 4 ,   orders   are   given   by  

|1,3|=4, |2|=2, |0|=   1.  

 

For   ℤ 12 ,   the   orders   are  

|1,5,7,11|=   12, |2,10|=   6, |3,9|=   4, |4,8|=3, |6|=2, |0|=1.  

 

In   both   of   these   examples   we   see   that   the   order   of   the   identity   element   is   1,   and   furthermore  
that   no   other   element   apart   from   the   identity   has   order   1,   this   is   true   in   general.   Let   G   be   a  
group   with   identity   element   e.   ∀g   ∈   G,   |g|   =   1   if   and   only   if   g   =   e. (Jackson   2017)  

 

Proof   

The   order   of   e   is   always   1,   since   1   is   the   smallest   positive   integer   n   for   which   e^n   =   e.  
Conversely,   if   g^1   =   e   then   g   =   e. (Jackson   2017)  
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The   simplest,   nontrivial,   case   is   that   of   a   group   where   all   the   nonidentity   elements   have   order  
2. (Jackson   2017)    If   we   let   G   be   a   nontrivial   group,   all   of   whose   elements   apart   from   the   identity   have  
order   2. (Jackson   2017)    Then   G   can   be   shown   to   be   commutative. (Jackson   2017)  

 

Proof   

Let   g,h   ∈   G,   by   the   hypothesis,   g^2   =   h^2   =   e,   and   so   g   =   g −1    and   h   =   h −1 .   It   then   follows   that,   as  
required,   g   ∘   h   =   g −1 ∘   h −1    =   (h   ∘   g) −1    =   h   ∘   g. (Jackson   2017)  

 

The   group   (G,   ∘)   is   said   to   be   an   abelian   group   if   ∘   is   commutative. (Jackson   2017)    Almost   all   groups  
implemented   cryptographically   are   abelian,   since   the   commutative   property   is   often   what   makes  
them   cryptographically   interesting. (Paar   &   Pelzi   2009)  

 

If   a   group,   with   group   operation   +   and   identity   0,   is   abelian,   it   is   called   an   additive   group. (Jackson  

2017)    An   additive   group   operation   is   denoted   by   addition,   f   =   g   +   h   and   5   ×   g   =   g   +   g   +   g   +   g   +  
g. (Jackson   2017)    If   a   group,   with   group   operation   ×   and   identity   1,   is   abelian   it   is   called   a   multiplicative  
group. (Jackson   2017)    A   multiplicative   group   operation   is   denoted   by   multiplication,   f   =   g   ×   h   and   g^5   =  
g   ×   g   ×   g   ×   g   ×   g. (Jackson   2017)    Roughly   speaking,   a   group   is   a   set   with   one   operation   and   the  
corresponding   inverse   operation.   If   the   operation   is   called   addition   denoted   "+",   the   inverse  
operation   is   subtraction   and   the   inverse   element   is   denoted   −a.   If   the   operation   is   multiplication  
denoted   "×",   the   inverse   operation   is   division   (or   multiplication   with   the   inverse   element)   and   the  
inverse   element   is   denoted   a −1 . (Paar   &   Pelzi   2009)  

 

Building   on   the   operation   of   arithmetic   addition   on   the   integers   ℤ,   we   consider   this   structure  
alongside   others   commonly   used   in   mathematics,   including   those   structures   addressed   by   this  
text,   to   determine   whether   each   example   structure's   binary   operation   and   underlying   set   satisfy  
the   group   axioms.   We   begin   with   the   algebraic   properties   of   the   groups   (ℤ,   +)   and   (ℤ,   ×)   in   Table  
10,   below:  

 

  ℤ   Addition   Multiplication   

Closure  a+b∈ℤ   a*b∈ℤ  

Associativity  a+(b+c)   =   (a+b)+c  a*(b*c)   =   (a*b)*c  

Commutativity  a+b   =   b+a  a*b   =   b*a  

Identity  a+0   =   a  a*1   =   a  

Inverse  a+(-a)   =0  1*1   =   1,   -1*(-1)   =   1  

Table   10  
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We   can   conclude   that   (Z,   *),   unlike   (Z,   +),   does   not   satisfy   the   group   axioms   as   most   member's  
inverses   are   not   integers,   ∃a∈ℤ,   a -1 ∉ℤ.   Furthermore,   addition   of     to     is   equivalent   to   addition a b  
of     to   ,   thus   addition   on   the   integers   is   commutative,   so   the   structure   (ℤ,   +)   is   also   an   Abelian b a  
group.   We   now   consider   the   group   operations   of   modular   addition   and   multiplication   on   the   set  
of   remainders   modulo   n,   .   The   algebraic   properties   of   (ℤ n ,   +)   and n∈ℤ, 0, 1, 2, ..., n }  ∀ ℤn = {     − 1  
(ℤ n ,   ×),   are   detailed   by   Table   11,   below.  

 

  ℤ n   Addition   modulo   n  Multiplication   modulo   n  

Closure  a+b   ≡   c   mod   n,   0   ≤   c   <   n  a*b   ≡   c   mod   n,   0   ≤   c   <   n  

Associativity  a+(b+c)   ≡   (a+b)+c   mod   n  a*(b*c)   ≡   (a*b)*c   mod   n  

Commutativity  a+b   ≡   b+a   mod   n  a*b   ≡   b*a   mod   n  

Identity  a+0   ≡   a   mod   n  a*1   ≡   a   mod   n  

Inverse  a+(n-a)   ≡   0   mod   n  ∃a -1 ∈ϕ(n)   ∀a∈ϕ(n)  

Table   11  

We   find   that,   as   with   their   arithmetic   counterparts,   (ℤ n ,   +)   is   a   group   and   (ℤ n ,   *)   is   not.   (ℤ n ,   +)   is  
also   an   Abelian   group   with   the   neutral   element   0   and   inverse   element   , ∃˗a∈ℤ ,  ∀a∈ℤn  n

  .   (ℤ n ,   ×)   does   not   form   a   group   because   not   all   elements a (n ) (mod n )  ˗ =  − a −a) 0 mod n  a + ( =   
  have   an   inverse   such   that   a   ×   a −1    =   1   mod   n.   In   fact,   given   that   0   ∈   ℤ n    and   0   is   not   coprime   to a  

any   number   and   is   therefore   non-invertible,   ∀n∈ℤ,   (ℤ n ,   ×)   is   not   a   group.  

 

Finally,   we   consider   the   group   operations   of   modular   addition   and   multiplication   on   the   set   of  
remainders   coprime   to   the   modulus   n.   We   will   denote   this   set   ϕ(n),   Euler's   totient   function.   The  
algebraic   properties   of   (ϕ(n),   +)   and   (ϕ(n),   ×),   are   detailed   by   Table   12,   below.  

 

ϕ(n)   Addition   modulo   n  Multiplication   modulo   n  

Closure  ∃   a+b   ∉   ϕ(n)  a*b   ≡   c   mod   n,   c   ∈   ϕ(n)  

Associativity  a+(b+c)   ≡   (a+b)+c   mod   n  a*(b*c)   ≡   (a*b)*c   mod   n  

Commutativity  a+b   ≡   b+a   mod   n  a*b   ≡   b*a   mod   n  

Identity  No  a*1   ≡   a   mod   n  

Inverse  ∃a∈ϕ(n)   |   -a∉ϕ(n)  ∀a∈ϕ(n)   ∃a -1 ∈ϕ(n)  

Table   12  
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Surprisingly,   we   now   find   that   (ϕ(n),   +)   is   not   a   group   and   (ϕ(n),   *)   is   now   an   Abelian   group.   

For   n   =10,   the   order   of   ϕ(10),   *)   is   4   not   9   as   ϕ(10)   =   {1,   3   ,   7,   9}.   We   know   that   when   n   is   a  
prime   number,   n∈ℙ,   the   order   of   (ϕ(n),   *)   is.   |ϕ(n)|=n-1,   e.g.    ϕ(n)   =   {1,   2,   ...,   n-1}.   More  
generally,   the   set   of   positive   integers   ℤ + 

n    =   {1,   …,   n-1   }   under   the   operation   of   multiplication  
modulo   n   forms   an   abelian   group   if   n   is   prime   i.e.   n∈ℙ. (Jackson   2017)    We   will   use   Z* p    to   denote   this  
group,   which   is   the   multiplicative   group   of   integers   modulo   prime   p   i.e.   (ϕ(p),   *)   where   p   ∈  
ℙ. (Jackson   2017)  
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6.3   :   Cyclic   Group  
 

An   abelian   group   is   called   cyclic   if   it   contains   at   least   one   member   which   all   others   may   be  
expressed   with   respect   to. (Paar   &   Pelzi   2009)    A   group   member   of   this   type   is   denoted   ,   and   is ∈G  g  
called   the   generator   of   the   group. (Paar   &   Pelzi   2009)    Every   group   member   is   obtained   by   repeated  
application   of   the   group   operation   with     or   it's   additive   inverse   . (Paar   &   Pelzi   2009) g g  ˗  

 

Consider   the   integers   under   addition   (ℤ,   +)   we   will   show   that   it   possesses   a   generator   .   A  1  g =   
given   positive   integer   is   obtained   by   repeated   application   of   the   group   operation   with   ,   e.g. g

.   While   0   or   a   given   negative   integer   is   obtained   by   repeated   application   of   the  4 = 1 + 1 + 1 + 1  
group   operation   with   the   additive   inverse   ,   e.g.   -4   =   1+(-1)+(-1)+(-1)+(-1)+(-1). g  ˗   

 

Generally   what   the   existence   of   a   group   generator   allows   is   the   ability   ∀a∈G   to   be   expressed   as  
either   a   multiple   of   g,     for   groups   with   additive   notation   or   as   an g , ∃g∈G and ∃k∈ℤ,  k = a   
exponent   of   g,     for   groups   with   multiplicative   notation.   A   generator   g,   of , ∃g∈G and ∃k∈ℤ,  gk = a   
a   cyclic   group   G,   may   be   denoted   by   G   =   ⟨g⟩. (Jackson   2017)    By   the   example   above   ℤ   =⟨1⟩   

 

If   we   let     be   addition   modulo     on   the   set     by   which   we   define   the   sum   of : ℤ  ∘ ℤ  → ℤ  +  n n n n  ℤn  
any   two   a,b   ∈   ℤ n    to   be   the   remainder   ,   of   the   sum   of     divided   by   the   modulos   r a )  ( + b n  
represented . (Jackson   2017)    This   operation   defines   the   cyclic   group     of   order (mod n), r∈ℤ  a + b = r  n  ℤn  

,   . (Jackson   2017)    The   operation   defined   above   can   be   represented   by   ℤ 12    as   shown   by n ∣  ∣ℤn = n  
Figure   15,   below.   The   elements   of   ℤ 12    ,   or   any   sized   cyclic   field,   may   be   conceptualized   "…  
geometrically   as   n   equally   spaced   points   around   the   circumference   of   a   circle". (Jackson   2017   p.   7)    We  
then   resolve   (a   +   b)   by   starting   at   point   a   then   moving   b   positions   clockwise. (Jackson   2017)    By  
example,   5   +   9   =   14   ≡   2   (mod   12). (Jackson   2017)  

 

Figure   15  
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Beyond   the   fact   that   a   cyclic   group   is   generated   by   a   single   element,   we   derive   a   few   general  
results   about   the   order   of   these   generators.   Suppose   G   =   ⟨g⟩   is   a   cyclic   group.   If   G   is   an   infinite  
cyclic   group,   by   definition   g   can’t   have   finite   order,   as   G   could   then   only   contain   finite  
members. (Jackson   2017)    Therefore   if   G   is   an   infinite   cyclic   group   |G|   =   ∞,   g   has   infinite   order   |g|   =  
∞. (Jackson   2017)    If   G   is   a   finite   cyclic   group   with   g   of   finite   order   |g|=n,   G   contains   exactly   n   members  
and   had   order   |G|=n. (Jackson   2017)  

 

Proof  

For   a   generator   of   finite   order   |g|=n   where   n∈ℕ, (Jackson   2017) g , ∀k, ∈ℤ   k = gk+n = gk+pn  p  

 

This   follows   from   g^k   =   e   iff   n|k,   thus   k   is   a   multiple   of   n   (k   mod   n   =   0),   hence   G   must   contain   at  
least   n   elements. (Jackson   2017)    As   well   G   =   ⟨g⟩   =   {g^k   |   k   ∈   ℤ}   =   {g,g^2,   ...,   g^(|g|-1),   e}   contains   at  
most   n   elements.   Therefore   G   is   a   finite   cyclic   group   |G|   =   n,   if   g   is   of   finite   order   |g|   =   n. (Jackson  

2017)  

 

How   do   we   know   a   given   member   g   ∈   G   generates   a   group   without   individually   confirming   each  
member's   expression   in   terms   of   g?   Let   k   ∈   ℤ n ,   k   is   a   generator   for   ℤ n    iff . (Jackson   2017) cd(k, n) 1  g  =   

 

Proof  

k   generates   ℤ n    iff   it   has   order   n,   ,   as   the   smallest   positive   integer   m   such   that   n|(mk)   is   n k∣  ∣ = n  
itself,   therefore   k   and   n   must   be   coprime   i.e.   (Jackson   2017) cd(k, n) 1  g  =   

 

As   such,   any   integer   k∈ℤ n ,   that   is   coprime   to   n   can   generate   the   finite   cyclic   group   ℤ n , 
(Jackson   2017)  

and   the   number   of   ℤ n    generators   may   be   denoted   by   ϕ(n),   Euler’s   totient   function   from   Section  
5.2. (Paar   &   Pelzi   2009)  
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6.4   :   Isomorphism  
 

As   we   are   interested   in   understanding   those   properties   which   define   various   algebraic  
structures,   it   is   of   great   utility   to   have   a   method   by   which   we   could   determine   whether   two   given  
groups   are   equivalent. (Jackson   2017)    An   isomorphism   is   an   equivalence   between   two   structures,  
structures   that   share   an   isomorphism   are   then   said   to   be   isomorphic. (Cid   Murphy   Robshaw   2006)  
Isomorphic   structures   are   those   with   equivalent   algebraic   properties. (Cid   Murphy   Robshaw   2006)    By  
definition,   groups   with   equivalent   properties   are   fundamentally   the   same   algebraic   structure,  
technically   indistinguishable. (Cid   Murphy   Robshaw   2006)    We   establish   the   existence   of   an   isomorphism   via  
bijection,   a   function   of   one-to-one   correspondence   with   respect   to   the   group   operations. (Jackson  

2017)    More   generally,   given   two   structurally   equivalent   groups     and     ,   we   want   a G, )  ( ∘ H ,•)  (  
bijection     such   that   the   product   in     of   the   images   of   any   two   elements   of     is   the G → H  f :  H  G  
same   as   the   image   of   their   product   in   . (Jackson   2017)  G   

 

Two   groups     and     are   isomorphic,   denoted ,   if   there   exists   a   bijective G, )  G = ( ∘ H ,•)  H = (  ≅ H  G  
function,   which   we   will   call   an   isomorphism,   such   that   ∀u,v∈G,    → H ,  f : G (u∘v)  f (u) (v)  f =  • f
. (Jackson   2017)   

 

For   example,   if   we   let   p∈ℙ   and   ℤ p-1    be   the   group   generated   additively   by   1   ∈   ℤ p-1 ,   and   let   ℤ* p    be  
the   group   generated   multiplicatively   by   some   g   ∈   ℤ* p ,   then   ,   multiplication   in   ℤ    p-1    is g → g  m m  
equal   to   exponentiation   in   ℤ* p    and   defines   an   isomorphism   between   them,   thus   these   groups  
are   isomorphic. (Cid   Murphy   Robshaw   2006)  

 

When   we   realize   such   relationships   exist,   the   properties   of   a   given   isomorphism   allow   for  
alternative   representation   of   some   underlying   set,   a   common   technique   in   the   study   of   algebraic  
structures. (Cid   Murphy   Robshaw   2006)    Isomorphisms   have   found   use   solving   problems   that   had   been  
intractable   otherwise. (Cid   Murphy   Robshaw   2006)   
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6.5   :   Ring  
 

Distributive  

A   binary   operation   ∘,   on   a   set   S,   is   distributive   iff   (Paar   &   Pelzi   2009) a, ,  ∈ R (a )∘c a∘c ∘c  ∀ b c + b =  + b  

 

We   carefully   studied   the   set   of   integers   ℤ,   giving   particular   attention   to   its   additive   structure.   

Through   abstraction   of   arithmetic   addition   on   the   set   of   integers   we   explored   some   properties  
associated   with   binary   operations;   closure,   associativity,   commutativity,   and   the   existence   of   an  
identity   and   inverse   elements.   This   led   us   to   formulate   the   definition   of   a   group,   (G,   ∘)   which  
encompassed   these   axioms.   We   now   define   a   structure   of   greater   complexity,   which   defines   a  
relationship   between   two   such   operations   and   their   underlying   set.   Having   established   an  
understanding   of   the   modulus   operator   in   Section   5.4,   we   are   now   ready   to   define   a   structure  
that   is   based   on   modular   arithmetic.   The   definition   for   the   algebraic   structure   modeled   by   the   set  
of   integers     under   the   operations   of   modular   arithmetic   addition   and   multiplication.   We   are  ℤn  
able   to   generalize   the   relationship   shared   by   the   arithmetic   operations   of   addition   and  
multiplication   via   the   algebraic   structure   called   a   Ring. (Jackson   2017)    Through   the   application   of   rings,  
theorems   derived   in   the   context   of   arithmetic   are   found   to   be   applicable   to   various   mathematical  
objects   such   as   polynomials   and   matrices,   and   vice   versa. (Jackson   2017)    A   ring   consists   of   a   set   R  
with   two   binary   operations   defined   on   its   elements. (Jackson   2017)    A   given   ring   R,   and   it's   operations  
which,   we   will   denote   ‘+’   and   '×',   are   represented   by   the   triple   (R,   +,   ×). (Jackson   2017)    To   qualify   as   a  
ring,   an   underlying   set   and   its   operations   must   satisfy   the   following   properties,   known   as   the   ring  
axioms: (Jackson   2017)  

 

Ring  

(R,   +,   ×)   is   a   ring   iff   (R,   +)   is   an   Abelian   group,   (R,   ×)   is   a   monoid,   and   ×   distributes   over   +.    (Paar   &  

Pelzi   2009)  

 

1.    (R,   +)   is   an   Abelian   group: (Jackson   2017)  

 

+   is   associative:   a, ,  ∈ R (a )  a b )  ∀ b c + b + c =  + ( + c  

+   is   commutative: a,  ∈ R a  b    ∀ b + b =  + a  

additive   identity: a∈R ∃0∈R a  a  ∀ + 0 =   

additive   inverse: a∈R ∃˗a∈R such that a ˗a)  ∀ + ( = 0  
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2.   (R,   ×   )   is   a   monoid   under   multiplication: (Jackson   2017)  

 

×   is   associative:   a, ,  ∈ R (a×b)×c a×(b×c)  ∀ b c =   

multiplicative   identity: a ∈ R ∃0 ∈ R a×1 a  ∀ =   

 

3.   Multiplication   is   distributive   with   respect   to   addition: (Jackson   2017)  

∀a,b,c   ∈   R   a×(b+c)   =   (a×b)+(a×c)   (left)  

∀a,b,c   ∈   R   (b+c)×a   =   (b×a)+(c×a)   (right)  

 

We   see   that   the   additive   operation   is   required   to   be   commutative,   while   the   multiplicative   is   not:  
∀a,b∈R   a×b   ≠   b×a.   An   example   of   a   ring   by   which   we   might   see   this   phenomenon   is   the   set   of  
n×n   or   square   matrices   with   the   operations   matrix   addition   and   matrix   multiplication. (Jackson   2017)  
This   set   is   a   ring   that   is   not   commutative   for   . (Jackson   2017)    Rings   for   which   both   operations  n > 1  
satisfy   the   property   of   commutativity   are   known   as   commutative   rings. (Jackson   2017)    This   new  
structure   definition   may   seem   complex,   but   these   axioms   characterize   the   sets   most   common   in  
mathematics,   for   example   the   infinite   commutative   ring   (ℤ,   +,   ∘):   the   set   of   integers,   with   the  
operations   of   arithmetic   addition   and   multiplication. (Jackson   2017)    For   the   majority   of   cryptologic  
practice   and   specifically   during   the   operation   of   the   AES,   we   consider   the   properties   and  
mechanisms   of   finite   rings,   like   the   commutative   ring   of   integers   modulo   N,   ℤ/ N ℤ. (Smart   2016)      As   we  
have   shown,   ℤ/ N ℤ   is   an   abelian   group   when   the   group   law   is   modular   addition,   we   will   now   see  
that   the   group   ℤ/ N ℤ   is   also   a   ring   if   we   consider   the   relationship   between   modular   addition   and  
multiplication. (Smart   2016)   

Ring   ℤ n    is   defined   as   the   set   ℤ n    =   {0,   1,   2,   ...   n   −   1}   and   two   operations:  

Addition   a+b   ≡   c   mod   n   ∀a,b,c   ∈   ℤ n  

Multiplication   a×b   ≡   c   mod   n   ∀a,b,c   ∈   ℤ n  

 

Ring   ℤ n    properties:  

(+)   identity  ∀a   ∈   ℤ n a   +   0   =   a   mod   n  

(+)   inverse ∀a   ∈   ℤ n a   +   (−a)   ≡   0   mod   n   

-a   =   (-a   +   m)   mod   m   as   0   ≤   a<m.  

(+)   is   closed ∀a,b,c   ∈   ℤ n a   +   b   ≡   c   mod   n   

(+)   is   associative ∀a,b,c   ∈   ℤ n (a   +   b)   +   c   =   a   +   (b   +   c)  

(+)   is   commutative ∀a,b   ∈   ℤ n a   +   b   =   b   +   a  
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(×)   identity ∀a   ∈   ℤ n a×1   =   a   mod   n   

(×)   inverse ∀a   ∈   ℤ n a   ×   a −1    ≡   1   mod   n  

a -1 ∈ℤ n    if   a,n   are   coprime   gcd(a,n)   =   1  

(×)   is   closed ∀a,b,c   ∈   ℤ n  a   ×   b   ≡   c   mod   n  

(×)   is   associative ∀a,b,c   ∈   ℤ n (a×b)×c   =   a×(b×c)  

(×)   is   commutative  ∀a,b   ∈   ℤ n a   ×   b   =   b   ×   a  

 

We   shall   consider   the   integer   ring   of   order   7   and   compute   addition   and   multiplication   for   3   and   5  
in   .   For   the   rig   ,   we   let   modulus   n   =   7,   and   the   ring   members   are   represented   by   ℤ 7    =  ℤ7  ℤ7  
{0,1,2,3,4,5,6}. (Paar   &   Pelzi   2009)  

3+5   =   8   ≡   1   mod   7 3   ×   5   =   15   ≡   1   mod   7  

We   will   now   highlight   the   following   property   of   rings   under   modular   arithmetic   addition   and  
multiplication   the   multiplicative   inverse   is   not   guaranteed   to   exists   for   all   elements   e   ∈   ℤ n    . 

(Paar   &  

Pelzi   2009)    If   an   inverse   exists   for   a   given   element   a,   we   are   able   to   apply   the   binary   operation   of  
division   and   receive   a   defined   result   . (Paar   &   Pelzi   2009)    A   convenient   method :  ≡ b (mod n)  ÷ b ÷ a × a 1−  
by   which   to   determine   whether   the   inverse   for   a   given   element     exists   or   not   is   to   determine a  
the   greatest   common   divisor   of     and   the   integer   modulus   ,   .   An   element   a   ∈   ℤ   has a n cd(a, n)  g   
a   multiplicative   inverse     iff   . (Paar   &   Pelzi   2009)    This   means,   if   we   determine   that   the a 1− cd(a, n) 1  g  =   
largest   integer   that   divides   both   numbers     and     is   1,     exists.   Methods   for   finding   the a n a 1−  

  usually   employ   the   Euclidean   algorithm. (Paar   &   Pelzi   2009)    For   example   to   determine   the cd(a, n)  g   
existence   of   the   multiplicative   inverse   of   15   in   ,   we   see   that   ,   as   such   the  ℤ26 cd(15, 6) 1  g 2 =   
inverse   must   exist.   Conversely,   since   gcd(14,26)   =   2   ≠   1   the   multiplicative   inverse   of   14   is   not  
defined   for   .  ℤ26  

In   general,   we   are   able   to   classify   the   ring   ℤn   as   the   set   of   elements   in   which   we   can   add,  
subtract,   multiply,   and   sometimes   divide. (Paar   &   Pelzi   2009)    However,   when   we   wish   to   ensure   that  
division   is   possible   for   some   a,b   ∈   ℤ n ,   a/b   =   x   (mod   n)   we   must   first   deduce   whether   a  
multiplicative   inverse   modulo   n   exists   for   a   given   element   a,   as   division   is   the   inverse   operation  
of   multiplication. (Smart   2016)      The   multiplicative   inverse   of   a   modulo   n   is   a   ring   member   c   such   that   a  
∘   c   =   c   ∘   a   =   1   (mod   n). (Smart   2016)      This   value   is   then   the   inverse   of   a,   denoted   a −1 ,   and   provides   c  
for   the   equation   a   ∘   c   =   1   (mod   n). (Smart   2016)      As   we   have   seen,   a -1    only   exists   iff     i.e. cd(a, n) 1  g  =   
when   a   and   n   are   coprime.   Of   particular   interest,   then,   is   when   n   is   a   prime   n   ∈   ℙ,   since   then   ∀a  
∈   ℤ/pℤ   and   we   obtain   a   solution   to   a   ∘   x   =   1   (mod   p)   for   all   a   ≠   0. (Smart   2016)      Hence cd(a, p) 1  g  =   
ℤ/pℤ   makes   the   operation   of   division   possible   because   ∀a∈ℤ/pℤ,   ∃a -1 ∈ℤ/pℤ   ,where   a   ≠   0. (Smart  

2016)      A   commutative   ring   such   that   every   nonzero   element   has   a   multiplicative   inverse   defines  
the   algebraic   structure   known   as   a   field. (Smart   2016)     
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6.6   :   Fields  
 

We   have   arrived   at   our   final   category   of   algebraic   structure,   the   field.   The   history   of   finite   fields  
can   be   traced   back   to   the   18th   century. (Dong   2010)    In   modern   research   finite   fields   have   assumed   a  
role   of   fundamental   importance   because   of   their   practical   applications   in   a   wide   variety   of   areas  
such   as   "coding   theory,   cryptography,   algebraic   geometry   and   number   theory". (Dong   2010   ch4s4)    With  
this   structure,   we   may   now   begin   to   consider   the   mechanism   of   AES   byte   arithmetic,   or  
application   of   the   arithmetic   operations   of   addition,   negation,   multiplication   and   inversion,   on  
bytes.   To   model   the   relationship   between   the   arithmetic   operations   of   addition   and   multiplication  
as   well   as   their   respective   inverses,   via   a   single   algebraic   structure   we   examine   a   set   and   two  
operations   by   which   we   can   establish   an   additive   and   a   multiplicative   group. (Paar   &   Pelzi   2009)    This   is  
what   abstract   algebraic   theory   defines   as   a   field.   A   field   consists   of   a   set   F,   with   two   invertible  
binary   operations   defined   on   its   elements. (Jackson   2017)    A   given   field   F,   and   it's   operations   which   we  
will   denote   ‘+’   and   '×'   are   represented   by   the   triple   (F,   +,   ×). (Jackson   2017)    In   order   to   qualify   as   a  
field,   an   underlying   set   and   it's   operations   are   required   to   satisfy   the   following   properties:   

 

Field  

(F,   +,   ×)   is   a   field   iff   (F,   +)   and   (F\{0},   ×)   are   abelian   groups,   such   that   .   <   F,   +,   ·   >   is   a  
commutative   ring   and   ×   is   distributive   over   +.    (Paar   &   Pelzi   2009)  

 

+,× Associative:   and   a, ,  ∈F  (a )  a b )  ∀ b c + b + c =  + ( + c a×b)×c a×(b×c)  ( =   

+,× Commutative:   and   a,  ∈F  a  b   ∀ b + b =  + a ×b b×a  a =    

+,× Identity:   and   a∈F  ∃0, ∈F  a  a  ∀ 1 + 0 =  ×1  a = a  

+ Inverse:  a∈F  ∃˗a∈F  such that a ˗a)  ∀ + ( = 0  

× Inverse: a∈F∖{0} ∃a ∈F  such that a×a  ∀ 1− 1− = 1  

+,× Distributive: a, ,  ∈ F  (a )×c a×c ×c  ∀ b c + b =  + b  

 

When   we   exclude   the   additive   identity,   the   field   elements   under   addition   +   and   under  
multiplication   ×   both   form   commutative   groups.   As   explained   previously,   a   field   is   a   commutative  
ring   in   which   there   exists   an   inverse   ∀a   ∈   F\{0}).   ∀a∈F\{0}   means   for   all   elements   a   of   F,  
excluding   0.   We   exclude   0,   the   additive   identity,   as   this   element   has   no   inverse   under   ×   by  
definition.   We   have   shown   how   sets   of   nonprime   order   with   multiplication   modulo   n   do   not  
define   a   group,   for   example,   ℤ 8 /{0}   =   {1,   2,   3,   4,   5,   6,   7}.   Therefore,   (ℤ n ,   +,   *),   in   general,   would  
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not   represent   a   field.   However,   for   prime   n,   n   ∈   ℙ,   the   structure   formed   Z* p,    is   an   Abelian   group.  
For   example   Z 5 /{0}   ={1,   2,   3,   4}   ℤ 5 

* .   (Z* p ,   +,   *)   defines   a   unique   field   type,   known   as   a   prime   field.  
These   are   fields   with   a   prime,   non-infinite   order,   denoted   ℤ/pℤ,   or   F p . 

(Paar   &   Pelzi   2009)    This   means  
that   if   we   consider   the   set   ℤ n    along   with   modular   addition   and   multiplication,   for   prime   n   n   ∈   ℙ,  
ℤ n    is   not   only   a   commutative   ring   but   also   a   prime   field. (Paar   &   Pelzi   2009)    Let   p   be   a   prime,   ∀p   ∈   ℙ,  
the   field   of   order   p,   may   be   constructed   as   the   integers   modulo   p   with   members   represented   by  
ℤ p    =   {0,   1,   ...,   (p−1)}. (Paar   &   Pelzi   2009)    Thus,   a   prime   field   is   the   field   of   equivalence   classes   modulo   p,  
a   =   b   in   F p    means   the   same   as   a   ≡   b   (mod   p).  
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6.7   :   Finite   Fields  
 

Cryptographic   algorithms,   both   symmetric   and   asymmetric   ciphers,   are   typically   concerned   with  
arithmetic   on   a   finite   number   of   elements,   thus   fields   with   a   finite   number   of   elements   are   of  
interest. (Paar   &   Pelzi   2009)    A   finite   field   consists   of   a   finite   set   F,   that   defines   arithmetic   for   two  
invertible   binary   operations. (Jackson   2017)    A   given   finite   field   GF,   of   order   n,   and   its   operations,   which  
we   will   denote   ‘+’   and   '×',   are   represented   by   the   triple   (GF(n),   +,   ×),   where   the   letters   GF   stand  
for   Galois   Field.   Finite   fields   are   known   as   Galois   Fields,   in   honour   of   Évariste   Galois,   a   French  
mathematician   who   established   finite   fields   and   proved: (Jackson   2017)  

 

Finite   Field  

A   field   of   order   q   exists   iff     ∀p∈ℙ,   k∈ℤ+ q = pk   

 

Prime   fields   are   of   the   form   where   the   field   characteristic   p   ∈   ℙ   and   k   =   1,   however,   these   are pk  
not   the   only   fields   of   finite   membership.   An   integer   q   produced   by   exponentiation   of   a   prime   pk

where   p   ∈   ℙ   and   k   =   1,    is   known   as   a   prime   power.   Therefore   Finite   or   Galois   fields   are   those  
fields   with   a   finite   order   equal   to   a   prime   or   prime   power.   

 

We   now   see   that   there   exists   finite   fields   with   5   (5^1)   members   and   343   (7^3)   members.      In   fact,  
the   field   used   by   the   AES   has   256   members   which   can   be   seen   to   be   a   prime   power,   256   =  
2*2*2*2*2*2*2*2   =   2 8 .   However,   there   is   no   finite   field   with   order   12   as   12   =   2*2*3,   and   12   is   thus  
not   a   prime   power.   

 

All   finite   fields   of   the   same   order   are   structurally   identical,   ∀p∈ℙ,   ∀n∈ℕ   finite   fields     of F (p )  G n  
equivalent   order   are   unique   up   to   isomorphism. (Jackson   2017)    Isomorphic   structures   display  
equivalent   algebraic   behavior. (Daemen   &   Rijmen   2002)   

 

Finite   fields     ∀p∈ℙ,   ∀n∈ℕ,   where   n>1,   can   be   represented   in   several   ways. (Daemen   &   Rijmen F (p )  G n  

2002)    The   representation   of     members   by   means   of   polynomials   with   coefficients   over   F p    is F (p )  G n  
the   method   implemented   by   the   specification   of   the   AES. (Daemen   &   Rijmen   2002)    As   well,   for   finite   fields  
with   an   order   that   are   a   prime   power,   the   additive   and   multiplicative   operations   cannot   be  
executed   as   modular   arithmetic. (Daemen   &   Rijmen   2002)    In   the   next   sections,   we   explain   this  
representation   and   it's   a   form   of   arithmetic.  
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Section   7   :   Galois   Field   Arithmetic  

7.1   :   Prime   Fields   
 

The   transformations   implemented   by   the   AES   operate   within   the   Galois   Field   of   256   members  
known   as   . (Paar   &   Pelzi   2009)    In   more   detail,   Rijndael's   Galois   Field,   which   the   AES F (2 )  G 8  
implements,   only   allows   numbers   representable   by   8   bits.   Due   to   the   property   of   closure,   we   are  
assured   that   all   mathematical   operations   defined   in   the   field   result   in   an   8-bit   number.   Thus  
operands   and   resultants   are   limited   to   the   range   ,   represented   by   numbers   from   0   to  ≤ i 2  0 <  8  
255   

 

Within   this   algebraic   structure   we   redefine   the   arithmetic   operations   of   addition,   subtraction,  
multiplication,   and   division   such   that   these   operations,   when   performed   on   the   underlying   set,  
remain   consistent   with   the   behaviour   of   an   infinite   set. (Paar   &   Pelzi   2009)    When   a   system   such   as   this  
has   been   properly   defined,   it   allows   us   to   perform   finite   field   arithmetic,   that   is,   perform  
operations   adhering   to   the   necessary   arithmetic   laws   with   a   field   of   finite   members   as   opposed  
to   infinite,   like   the   fields   of   rational   or   real   numbers. (Paar   &   Pelzi   2009)    Galois   Field   Arithmetic   has  
become   integral   to   many   modern   applications   such   as   linear   block   codes   in   coding   theory,  
Reed–Solomon   error   correction,   and   in   cryptography   algorithms   such   as   the   AES   encryption  
algorithm. (Gallian   2016)    While,   by   definition,   no   finite   field   is   infinite,   there   are   infinitely   many   finite  
fields.   This   section   describes   how   these   arithmetic   operations   have   been   defined   for   the   AES.  

 

As   we   have   shown,   the   order   of   a   finite   field   is   necessarily   of   the   form   p n    for   p   ∈   ℙ,   n   ∈   ℤ + .   Our  
first   example   of   finite   field   arithmetic,   and   perhaps   the   most   intuitive,   are   operations   within   fields  
of   prime   order   p n ,   where   p∈ℙ   and   n   =   1   e.g.     =   {0,   1,   .   .   .   ,   (p   −   1)}.   Operations   in   a   prime F (p)  G  
field     employ   the   system   of   modular   arithmetic,   using   the   field   characteristic   as   the F (p)  G  
modulus. (Daemen   &   Rijmen   2002)    Thus   the   prime   field   operations   are   "integer   addition   modulo   p" (Daemen   &  

Rijmen   2002   p.   13)    and   "integer   multiplication   modulo   p". (Daemen   &   Rijmen   2002   p.   13)    We   consider   the   finite   field  
of   order   5,   GF(5)   =   {0,1,2,3,4}.    The   additive   inverse   is   ,   while   any   nonzero  (−a) 0 mod p  a +  =   
multiplicative   inverse   is   given   by   a·a −1 =1.   Tables   13,   14,   15,   and   16,   shown   below,   describe  
binary   addition   and   multiplication,   as   well   as   the   additive   and   multiplicative   inverse   of   each   field  
element.   
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addition  

+  0  1  2  3  4  

0  0  1  2  3  4  

1  1  2  3  4  0  

2  2  3  4  0  1  

3  3  4  0  1  2  

4  4  0  1  2  3  

 

additive   inverse  

-0   =   0  

-1   =   4  

-2   =   3  

-3   =   2  

-4   =   1  

 

multiplication  

*  0  1  2  3  4  

0  0  0  0  0  0  

1  0  1  2  3  4  

2  0  2  4  1  3  

3  0  3  1  4  2  

4  0  4  3  2  1  

 

multiplicative   inverse  

0 -1  
DNE  

1 -1 =1  

2 -1 =3  

3 -1 =2  

4 -1 =4  

 

Tables   13,   14,   15,   16  

 

As   all   finite   fields   used   in   the   description   of   the   AES   have   a   characteristic   of   2,   the   mechanisms  
of   arithmetic   in     are   necessary   to   understand.   Using   the   characteristic   of     for F (2)  G F (2)  G  
modular   arithmetic,   the   only   possible   values   are   0   and   1,   as   a   modulus   of   2   only   permits   these  
integer   remainders.   Thus     (also   F 2 ,   ℤ/ 2 ℤ   or   ℤ 2 )   is   the   Galois   Field   of   two   members, F (2)  G  

,   which   happens   to   be   the   field   of   least   order.   The   two   elements   are   nearly F (2) 0, }  G = { 1  
always   called   0   and   1,   being   the   additive   and   multiplicative   identities,   respectively.   As   defined,  
arithmetic   is   done   modulo   2,   yielding   Tables   17   and   18:  

 

addition   and   subtraction   correspond   to   the   logical   XOR   operation. (Daemen   &   Rijmen   2002) F (2)  G  

+/-  0  1  

0  0  1  

1  1  0  

Table   17  

 

  multiplication   corresponds   to   the   logical   AND   operation. (Daemen   &   Rijmen   2002) F (2)  G  

*  0  1  

0  0  0  

1  0  1  

Table   18   
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7.2   :   Extension   Fields   F (p )  G n  
 

However,   the   field   used   by   the   AES   has   far   more   than   two   members.   The   AES   implements   the  
finite   field   containing   256   members,   denoted   GF(2 8 )   chosen   specifically   because   each   of   the  
field   elements   can   be   represented   by   a   single   8-bit   byte. (Paar   &   Pelzi   2009)    AES   considers   every  
operand   byte   as   a   GF(2 8 )   field   member   and   all   data   manipulation   performed   by   the   AES   is  
within   this   finite   field. (Paar   &   Pelzi   2009)  

 

In   Section   6.2   we   show   that   (ℤ,   +,   *)   does   not   form   a   field   because   (ℤ\{0},   *)   is   not   a  
multiplicative   group.   In   general,   (ℤ n ,   +,   *)   is   not   a   finite   field   because   only   those   members  
coprime   to   the   order   have   inverses.   For   example,   ℤ 10 /{0}   =   {1,   2,   3,   4,   5,   6,   7,   8,   9}   under  
modular   multiplication   is   not   a   group.   When   n   is   a   prime   number,   n∈ℙ,   addition   and  
multiplication   modulo   a   prime   number   p   form   a   finite   field. (Daemen   &   Rijmen   2002)    ℤ 5 /{0}   ={1,   2,   3,   4}   with  
modular   multiplication   is   the   Abelian   group   ℤ 5 

* ,   therefore,   (ℤ 5 ,   +,   *)   is   a   finite   field. (Daemen   &   Rijmen   2002)  
The   characteristic   of   prime   fields   is   the   order,   we   shall   show   that   modular   arithmetic   does   not  
allow   us   to   construct   a   finite   field   with   order   of   p n    for   p∈ℙ   and   n∈ℕ   where   n>1.  

 

Fields,   with   an   order   that   is   a   prime   power   p n    where   n   >   1,   are   known   as   Extension   Fields. (Paar   &  

Pelzi   2009)    We   will   represent   order   p n    finite   fields   using   . (Daemen   &   Rijmen   2002)    If   the   order   of F (p )  G n  
  is   not   prime,   the   field   operations   cannot   be   represented   by   modular   addition   and F (p )  G n  

multiplication. (Daemen   &   Rijmen   2002)    We   will   see   that   extension   fields   members   require   both   a   notation  
for   its   members   and   a   method   of   arithmetic.   These   members   are   represented   as   polynomials,  
and   that   computation   in   an   extension   field   is   achieved   by   performing   modular   polynomial  
arithmetic.  
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7.3   :   Representation   F (p )  G n  
 

We   represent   an   extension   field   using   the   polynomial   basis. (Cid   Murphy   Robshaw   2006)    By   this   method,   a  
field's   elements   are   representable   by   a   set     of   order     and   with   two   polynomial F (p )  G n pn  
operations. (Paar   &   Pelzi   2009)    The   AES   considers   these   polynomials   as   abstract   entities   only,   while  
they   are   represented   by   polynomial   equations,   these   equations   are   never   evaluated. (Daemen   &   Rijmen  

2002)    As   coefficient   values   are   defined   by   a   field   F,   we   say   it   is   a   polynomial   over   . (Cid   Murphy   Robshaw  F  

2006)    Elements   of     are   thus   represented   as   polynomials   of   degree   less   than   n   over   GF(p). F (p )  G n  
Generally,   a   polynomial   over   a   field     is   denoted:  F  

 

(x) x x .. x x  b = bn 1−
n 1− + bn 2−

n 2− + . + b2
2 + b1 + b0  

 

where   x   is   known   as   the   indeterminate   of   the   polynomial,   and   the   coefficients   are   members  
. (Daemen   &   Rijmen   2002)    The   degree   of   a   polynomial   is     if   ,   and   L   is   the  ∈ GF (2)  bi L  0, ∀ i L  bi =   >   

smallest   number   with   this   property. (Daemen   &   Rijmen   2002)    We   will   denote   the   set   of   polynomials   over   a  
given   field     by   ,   the   set   of   polynomials   over   a   field     of   degree   below   L   is   denoted   by  F [x]  F  F  

,   such   that   the   AES   field   GF(2 8 )   =   GF(2)|8   . (Daemen   &   Rijmen   2002)    "In   computer   memory,   the [x]∣L  F  
polynomials   in     with     a   finite   field   can   be   stored   efficiently   by   storing   the     coefficients [x]∣L  F  F L  
as   a   string". (Daemen   &   Rijmen   2002   p.   13)  
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7.4   :   Rules   of   Arithmetic   F (p )  G n  
 

Now   that   we   have   a   form   of   representation   for   extension   field   elements,   we   are   able   to   define  
polynomial   arithmetic.   Polynomials   over   field   ,   are   capable   of   addition   and   multiplication F (p )  G   
but   the   coefficients   are   computed   in     and   must   be   reduced   modulo   p. (Paar   &   Pelzi   2009)    For F (p)  G  
example,   compare   the   result   of   the   equations   from   Appendix   A   Polynomial   Arithmetic   under  
GF(11): (Dong   2010)  

 

(x 5    +   3x 3    +   4)+(6x 6    +   4x 3 )   =   6x 6    +   x 5    +   7x 3    +   4  

(x 5    +   3x 3    +   4)-(6x 6    +   4x 3 )   =   5x 6    +   x 5    +10x 3    +   4  

(x 5    +   3x 3    +   4)*(6x 6    +   4x 3 )   =   6x 11    +   7x 9    +   4x 8    +   3x 6    +   5x 3  

(3x 6    +   7x 4    +   4x 3    +   5)   ÷   (x 4    +   3x 3    +   4)   =   3x 2    +   3x   +   3   with   remainder   x 3    +   10x 2    +   4x   +1  

 

If   a(x)=   a n x n    +   a n-1 x n-1    +   ...   +   a 0    and   b(x)=   b m x m    +   b m-1 x m-1    +   ...   +   b 0    are   two   polynomials   over   a   field  
F,   then   a(x)   =   p(x)*b(x)+r(x)   for   unique   r(x)   p(x)   ∈   F   where   r(x)   is   of   degree   smaller   than   n. (Dong  

2010)    The   polynomial   r(x)   is   called   the   remainder   of   a(x)   modulo   b(x). (Dong   2010)    For   polynomials  
a(x),   b(x),   p(x)   ∈   F,    if   p(x)   divides   a(x)-b(x),   then   a(x)   is   congruent   to   b(x)   modulo   b(x). (Dong   2010)  
We   denote   the   modular   equivalence   of   polynomials   in   a   similar   fashion   to   the   integers   written  
a(x)   ≡   b(x)   mod   p(x). (Dong   2010)   

 

A   polynomial   d(x)   is   irreducible   over   the   field     iff   there   exist   no   two   polynomials   a(x)   and F (p)  G  
b(x)   with   coefficients   in     such   that   d(x)   =   a(x)   ×   b(x),   where   a(x)   and   b(x)   are   of   degree   > F (p)  G  
0. (Daemen   &   Rijmen   2002   p.   15)    Irreducible   polynomials   are   roughly   comparable   to   prime   numbers,   i.e.,  
their   only   factors   are   1   and   the   polynomial   itself. (Cid   Murphy   Robshaw   2006)  

 

In   contrast   to   prime   fields,   operation   performed   in   an   extension   field,   those   fields   of   the   form  
,   requires   two   moduli.   These   moduli   are   the   polynomial   modulus   and   the   integer F (p )  G n  

modulus.   Arithmetic   results   must   first   be   reduced   by   the   polynomial   modulus   and   then   the  
remainder's   coefficients   must   be   reduced   by   the   integer   modulus.   An   example   shown   in   Figure  
16,   below,   is   2x 2 +x 4    ≡   0   mod   (x 2 -1)   in   GF(3)|2   is   confirmed   if   we   first   reduce   by   the   irreducible  
polynomial   modulus   x 2 -1   to   obtain   a   remainder   of   3.   This   remainder   is   then   reduced   by   the   field  
characteristic   3:   3   ≡   0   mod   3   confirming   the   examples   equivalence. (Dong   2010)  
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Figure   16  

 

Extension   field   addition   is   executed   similar   to   that   of   prime   fields.   In   ,   we   perform   addition F (p)  G  
of   each   polynomial's   like   terms,   each   term   is   reduced   by   the   prime   characteristic   and   our   result  
is   the   remainder. (Paar   &   Pelzi   2009)    Generally,   under   ,   the   same   polynomial   terms   are   summed F (p )  G n  
then   reduced   using   the   prime   field   characteristic. (Paar   &   Pelzi   2009)    The   degree   of   c(x)   is   at   most   the  
maximum   of   the   degrees   of   a(x)   or   b(x)   and   as   the   polynomial   modulus   used   to   construct   the  
field   limits   their   degree,   the   addition   is   not   only   closed   but   is   performed   without   the   need   for  
reduction   by   the   polynomial   modulus. (Daemen   &   Rijmen   2002)    Addition   of   polynomials   is   associative   and  
commutative. (Daemen   &   Rijmen   2002)    The   neutral   element   or   additive   identity,   0,   is   the   polynomial   with  
all   coefficients   equal   to   0. (Daemen   &   Rijmen   2002)    The   inverse   of   the   polynomial   basis   is   found   by  
replacing   each   coefficient   by   its   inverse   element   in   F. (Daemen   &   Rijmen   2002)    Thus   the   structure  

   is   an   Abelian   group. (Daemen   &   Rijmen   2002) F (p)∣n, >  < G  +  

 

Extension   field   multiplication   is   executed   via   an   approach   similar   to   the   case   of   multiplication   in  
prime   fields.   In   ,   we   multiply   the   two   representative   polynomials   then   reduce   each   term F (p)  G  
by   the   field   characteristic   and   consider   only   the   remainder. (Paar   &   Pelzi   2009)    In   extension   fields,   the  
product   of   the   multiplication   is   divided   by   an   irreducible   polynomial,   and   we   consider   only   the  
remainder   after   reduction   by   the   field   characteristic. (Paar   &   Pelzi   2009)    With   respect   to   polynomial  
addition,   polynomial   multiplication   is   associative,   commutative,   and   distributive. (Daemen   &   Rijmen   2002)  
In   order   to   make   the   multiplication   closed   over   ,   we   select   a   polynomial   m(x)   of   degree F (p)∣n  G  
n. (Daemen   &   Rijmen   2002)    The   multiplication   of   two   polynomials   a(x)   and   b(x)   is   then   defined   as   the  
algebraic   product   of   the   polynomials   modulo   m(x): . (Daemen   &   Rijmen   2002) (x) ≡ a(x) × b(x) (mod m(x))  c  
The   group   identity   or   neutral   element   is   the   polynomial   of   degree   0   and   with   coefficient   of   x 0  
equal   to   1. (Daemen   &   Rijmen   2002)    Distributive   As   well,   it   holds   that  

. (Daemen   &   Rijmen   2002)    The   structure (x ) • (b(x ) c(x )) a(x ) • b(x ) a(x ) • c(x )  a +  =  +   
  is   a   commutative   ring. (Daemen   &   Rijmen   2002) F (p)∣n, , ·  < G  +  >   

 

We   now   show   that   for   special   choices   of   the   reduction   polynomial   m(x),   the      structure F (p)∣n  G  
is   a   field. (Daemen   &   Rijmen   2002)    Similar   to   standard   modular   arithmetic,   the   multiplicative   inverse   is  
found   by   means   of   the   Extended   Euclidean   Algorithm   (EEA). (Daemen   &   Rijmen   2002)    Given   a   polynomial  
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for   which   we   would   like   the   inverse,   the   EEA   provides   polynomials   and such   that (x)  a (x)  b (x)  c  
. (Daemen   &   Rijmen   2002) ,   the   greatest   common (x)×b(x) (x)×c(x)  a + m cd(a(x), (x))  = g m cd(a(x), (x))  g m  

divisor   of   the   polynomials   and   ,   is   always   equal   to   1   iff     is   irreducible. (Daemen   &   Rijmen (x)  a (x)  m (x)  m  

2002)    Applying   modular   reduction   with   an   irreducible     we   get: . (Daemen (x)  m a(x) × b(x) ≡ 1 (mod m(x))    

&   Rijmen   2002)    By   algebraic   manipulation   we   find   that   and   thus   b(x)   is   the (x) (x ) mod m(x)  b 1− = a  
inverse   element   of   a(x). (Daemen   &   Rijmen   2002)    Therefore,   if   we   let   F   be   the   field   ,   with   an F (p )  G n  
irreducible   modulus   m(x)   of   degree   n   over   ,   the   structure      is   a   field   of F (p)  G F (p)∣n, , ·  < G  +  >  
order   p n ,   represented   by   the   polynomial   basis   over     of   degree   less   than   n. (Dong   2010)(Daemen   & F (p)  G  

Rijmen   2002)    For   example,   we   can   represent   the   extension   field   GF(3 2 )   by   a   polynomial   basis   of  
degree   less   than   2   using   the   irreducible   polynomial   ,   shown   by   Table   19   and   20   below. (Dong  x2 + 1  

2010)  
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+   0   1   2   x   x+1   x+2   2x   2x+1   2x+2   

0  0  1  2  x  x+1  x+2  2x  2x+1  2x+2  

1  1  2  0  x+1  x+2  x  2x+1  2x+2  2x  

2  2  0  1  x+2  x  x+1  2x+2  2x  2x+1  

x  x  x+1  x+2  2x  2x+1  2x+2  0  1  2  

x+1  x+1  x+2  x  2x+1  2x+2  2x  1  2  0  

x+2  x+2  x  x+1  2x+2  2x  2x+1  2  0  1  

2x  2x  2x+1  2x+2  0  1  2  x  x+1  x+2  

2x+1  2x+1  2x+2  2x  1  2  0  x  x+2  x+2  

2x+2  2x+2  2x  2x+1  2  0  1  x+2  x  x+1  

Table   19  

 

+   0   1   2   x   x+1   x+2   2x   2x+1   2x+2   

0  0  0  0  0  0  0  0  0  0  

1  0  1  2  x  x+1  x+2  2x  2x+1  2x+2  

2  0  2  1  2x  2x+2  2x+1  x  x+2  x+1  

x  0  x  2x  2  x+2  2x+2  1  x+1  2x+1  

x+1  0  x+1  2x+2  x+2  2x  1  2x+1  2  x  

x+2  0  x+2  2x+1  2x+2  1  x  x+1  2x  2  

2x  0  2x  x  1  2x+1  x+1  2  2x+2  x+2  

2x+1  0  2x+1  x+2  x+1  2  2x  2x+2  x  1  

2x+2  0  2x+2  x+1  2x+1  x  2  x+2  1  2x  

Table   20  
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7.5   :   Representation   GF(2 n )  
 

For   any   prime   power   there   is   a   single   finite   field,   hence   all   representations   of     are F (p )  G n  
isomorphic. (Paar   &   Pelzi   2009)    Despite   this   equivalence,   the   representation   has   an   impact   on   the  
implementation   complexity. (Paar   &   Pelzi   2009)    Thus   the   AES   finite   field   members   can   be   represented   in  
several   different   ways.   When   the   prime   characteristic   is   2,   it   is   conventional   to   express   elements  
of     as   binary   numbers,   with   each   term   in   a   polynomial   represented   by   one   bit   in   the F (p )  G n  
corresponding   element's   binary   expression. (Daemen   &   Rijmen   2002)  

 

Extension   fields   are   called   binary   fields   or   characteristic-two   fields   if   their   order   is   of   the   form  
2 n . (Dong   2010)    Fields   with   a   characteristic   of   two   are   particularly   efficient   for   implementation   in  
modern   day,   binary   based,   hardware   and   software. (Dong   2010)    This   is   because   any   extension   field  
with   a   characteristic   of   two,   GF(2 n ),   has   elements   that,   rather   than   being   represented   as  
integers,   are   representable   as   polynomials   with   coefficients   in   GF(2)   =   {0,   1},   known   as   binary  
polynomials. (Dong   2010)    GF(2 n )   elements   can   be   represented   as   n-bit   strings   with   each   bit   position  
corresponding   to   polynomial   coefficients   of   the   same   position. (Dong   2010)     Members   of   this   field  
represented   by   the   polynomial   basis   have   a   maximum   degree   of   (n−1),   so   that   there   are   n  
coefficients   in   total   for   every   element   and   2 n    such   polynomials   in   the   field. (Dong   2010)    For   the   field  

,   which   is   implemented   by   the   AES,   there   are   exactly   2 8    =   256   such   polynomials. (Paar   &   Pelzi F (2 )  G 8  

2009)    Each   polynomial   representation   is   a   bitstring   consisting   of   the   bits   b  b  b  b  b  b  b  b }  { 7 6 5 4 3 2 1 0  
represented   by   a   polynomial   basis   over   : F (2) 0, }  G = { 1  

 

x  x  x  x  x  x  x  xb7
7 + b6

6 + b5
5 + b4

4 + b3
3 + b2

2 + b1
 + b0 = ∑

7

1=0
bi

i  

 

Example:   the   hexadecimal   value   ‘57’   (binary   01010111)   corresponds   with   polynomial    (NIST   2001)  

 

→ x  x  x  x  x  x  x   b7
7 + b6

6 + b5
5 + b4

4 + b3
3 + b2

2 + b1
 + b0  

→           0 * x7 + 1 * x6 + 0 * x5 + 1 * x4 + 0 * x3 + 1 * x2 + 1 * x + 1      x6 + x4 + x2 + x + 1  

 

The   following   are   equivalent   representations   in   a   characteristic   2   finite   field: (NIST   2001)  

 

Polynomial:   x 6    +   x 4    +   x 2    +   x   +   1     Binary:   {01010111}     Hexadecimal:   {57}  
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During   the   operation   of   the   AES,   the   most   basic   data   objects   we   manipulate   are   8-bit   bytes. (NIST  

2001)    All   possible   byte   values   may   be   expressed   by   the   polynomial   basis   of   GF(2)   with   degree  
eight   or   fewer. (NIST   2001)    Due   to   all   members   of   GF(2 8 )   being   representable   by   a   single   byte   length  
bitstring   representing   the   polynomial   basis   over   GF(2),   AES   byte   arithmetic   is   represented   by  
polynomial   arithmetic   over   the   field   GF(2). (NIST   2001)    Addition   and   Multiplication   of   bytes   is  
executed   by   polynomial   arithmetic   of   corresponding   polynomial   coefficients   in   the   underlying  
field   of   GF(2)   modulo   an   irreducible   binary   polynomial   of   degree   8. (Paar   &   Pelzi   2009)    Therefore,   to  
define   byte   arithmetic,   the   AES   provides   a   suitable   reduction   polynomial   m(x)   given   by: (Paar   &   Pelzi  

2009)   

 

  or   11B   in   hexadecimal   notation (x) x  )  m = ( 8 + x4 + x3 + x + 1  
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7.6   :   Addition   GF(2 8 )  
 

The   AES   key   schedule   and   key   addition   layer   rely   on   addition. (Paar   &   Pelzi   2009)    The   AES   implements  
addition   in   the   extension   field   GF(2 8 ). (Daemen   &   Rijmen   2002)    Extension   field   addition   is   generally  
executed   by   first   using   a   polynomial   basis   to   represent   field   elements,   then   performing   modular  
arithmetic   in   the   underlying   field. (Paar   &   Pelzi   2009)    For   the   AES,   polynomial   coefficients   are   handled   in  
the   underlying   field   GF(2). (Paar   &   Pelzi   2009)    In   GF(2),   the   sum   of   two   members   is   given   by   their  
integer   sum   modulo   2. (Paar   &   Pelzi   2009)    We   have   seen   that   addition   and   subtraction   modulo   2   are   the  
same   operation   as   displayed   in   Table   17.   GF(2)   is   defined   by   modulo   2   arithmetic   by   which  
addition   and   subtraction   are   defined   to   be   the   same   operation   as   bitwise   XOR.   Therefore   the  
operation   of   polynomial   summation   and   its   inverse   consists   of   an   XOR   between   the   coefficients  
of   equal-powered   terms.   Let   A(x),B(x)   ∈   GF(2 n ),   we   represent   their   sum   or   difference   by: (Paar   &   Pelzi  

2009)  

 

(x) (x) (x) x  mod 2C = A + B = ∑
n 1−

i=0
ci

i ≡ ai + bi  

 

(x) (x) (x) x  mod 2C = A − B = ∑
n 1−

i=0
ci

i ≡ ai − bi  

 

An   example   in   GF(2 8 )   is   the   sum   of   the   polynomials   {57}   and   {83}   computed: (Paar   &   Pelzi   2009)  

 

A(x)=        x 6    +   x 4    +   x 2    +   x   +   1  

B(x)=   x 7    +                 x   +   1  

C(x)=   x 7    +   x 6    +   x 4    +   x 2  
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7.7   :   Multiplication   in   GF(2 8 )  
 

Extension   field   multiplication   is   the   core   operation   of   the   AES   MixColumn   function. (Paar   &   Pelzi   2009)  
The   AES   implements   multiplication   in   the   field   GF(2 8 ). (Paar   &   Pelzi   2009)    Extension   field   multiplication  
is   generally   executed   by   first   using   a   polynomial   basis   to   represent   field   elements,   then  
performing   modular   arithmetic   in   the   underlying   field. (Paar   &   Pelzi   2009)    For   the   AES,   polynomial  
coefficients   are   handled   in   the   underlying   field   GF(2). (Paar   &   Pelzi   2009)    We   use   the   "•"   symbol   to  
denote   extension   field   multiplication.   GF(2 n )   extension   field   elements   represented   by   a   GF(2)  
polynomial   basis   are   multiplied   using   arithmetic   polynomial   multiplication: (Paar   &   Pelzi   2009)  

 

(x) (x) (x) (a x .. a ) b x .. b ) (c x .. c )  C = A · B =  m 1−
m 1− + . +  0 · ( m 1−

m 1− + . +  0 =  2m 2−
2m 2− + . +  0  

 

where: , b  mod 2  c0 = a0 0 ,   , b b  mod 2  c1 = a0 1 + a1 0 ... b  mod 2  c2m 2− = am 1− m 1−  

 

The   coefficients   a i ,   b i    and   c i    ∈   GF(2),   and   that   coefficient   arithmetic   is   performed   in   GF(2). (Paar   &  

Pelzi   2009)    A   product   polynomial   C(x)   with   degree   higher   than   (n−1)   must   be   reduced   such   that  
results   are   representable   by   the   AES   polynomial   basis   of   degree   7   and   below.   Thus   the   AES  
supplies   an   irreducible   polynomial   of   degree   n   with   coefficients   from  m(x) = x8 + x4 + x3 + x + 1  
GF(2).   An   example   in   GF(2 8 )   is   the   product   of   the   elements   denoted   by   {57}   and   {83}: (Gladman   2003)  

 

{57}   •   {83}   =   {C1},   or:  

) (x )  (x6 + x4 + x2 + x + 1 +  7 + x + 1
x ) x ) x )  = ( 13 + x11 + x9 + x8 + x7 ⊕ ( 7 + x5 + x3 + x2 + x ⊕ ( 6 + x4 + x2 + x + 1  

  = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1  

 

 modulo x  x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1 8 + x4 + x3 + x + 1  = x7 + x6 + 1   
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7.8   :   Polynomials   with   Coefficients   in   GF(2 8 )   
 

In   the   AES   specification,   data   words   consisting   of   4-byte   columns   of   the   state   array   can   be  
modeled   by   polynomials   over   GF(2 8 )   of   the   form:   . (NIST   2001)    These (x) x x x  a = a3

3 + a2
2 + a1

 + a0  
polynomials   have   a   degree   of   four   with   coefficients   that   are   values   of   the   AES   extension   field.  
We   will   denote   such   a   collection   by   a   4-byte   vector   [a 0 ,   a 1 ,   a 2 ,   a 3 ]. 

(NIST   2001)    These   polynomials  
behave   differently   than   polynomials   previously   used   to   represent   individual   field   elements.   While  
both   polynomial   definitions   use   the   same   indeterminate,   x,   the   coefficients   of   this   new   definition  
are   extension   field   elements   defined   by   bytes,   instead   of   bits. (NIST   2001)    The   multiplication   of  
four-term   polynomials   uses   a   different   reduction   polynomial,   defined   below. (NIST   2001)   

 

Addition   of   these   new   word   value   representations   is   performed   by   adding   the   extension   field  
coefficients   of   like   powers   of   the   indeterminate   x. (NIST   2001)    If   we   let   a(x)   and   b(x)   be   polynomials  
over   : F (2 )  G 8   

 

and (x) x x x  a = a3
3 + a2

2 + a1
 + a0 (x) x x x  b = b3

3 + b2
2 + b1

 + b0  

 

then   the   addition   operation   is   a   combination   of   corresponding   bytes   of   each   word,   the   XOR   of  
the   complete   word   values:  

 

(x) (x) )x )x )x )x  a + b = (a3 ⊕ b3
3 + (a2 ⊕ b2

2 + (a1 ⊕ b1
1 + (a0 ⊕ b0

0  

 

Multiplication   of   these   new   word   value   representations   is   performed   in   two   steps. (NIST   2001)    If   we  
let   a(x)   and   b(x)   be   polynomials   over   : F (2 )  G 8   

 

and (x) x x x  a = a3
3 + a2

2 + a1
 + a0 (x) x x x  b = b3

3 + b2
2 + b1

 + b0  

 

then,   first,   their   polynomial   product     is   algebraically   expanded. (NIST   2001)    coefficients (x) (x)b(x)  c = a  
of   same   powered   terms   are   collected   to   give:  

 

(x) x x x x x x  c = c6
6 + c5

5 + c4
4 + c3

3 + c2
2 + c1

1 + c0  
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•b  c0 = a0 0 •b ⊕a •b  c1 = a1 0 0 1 •b ⊕a •b ⊕a •b  c2 = a2 0 1 1 0 2

•b ⊕a •b ⊕a •b ⊕a •b  c3 = a3 0 2 1 1 2 0 3 •b ⊕a •b ⊕a •b  c4 = a3 1 2 2 1 3 •b ⊕a •b  c5 = a3 2 2 3

•b  c6 = a3 3  

 

Often,     can   no   longer   be   represented   by   a   4-byte   vector   so   we   must   reduce     modulo   a (x)  c (x)  c  
polynomial   of   degree   4. (NIST   2001)    For   the   AES   algorithm,   this   is   accomplished   with   the   polynomial  
x 4    +   1,   so   that   . (NIST   2001)    The   modular   product   of   a(x)   and   b(x),   denoted  mod (x  1) x  xi 4 +  =  (i mod 4)  

,   is   given   by   the   four-term   polynomial   d(x): (NIST   2001) (x) ⊗ b(x)  a   

 

d x x x  d(x) = 3
3 + d2

2 + d1
 + d0  

 

 

Figure   17  

 

Figure   18  

 

AES   operations   consisting   of   multiplication   by   a   fixed   polynomial   may   be   written   as   the (x)  a  
matrix   multiplication,   shown   in   Figure   18,   above   and   solved   for   by   the   system   of   equations  
shown   in   Figure   17,   above.   Because     is   not   an   irreducible   polynomial   over   ,  x4 + 1 F (2 )  G 8  

multiplication   by   a   fixed   polynomial   is   not   necessarily   invertible. (NIST   2001)    A x )  x4 + 1 = ( + 1 4  
polynomial     has   an   inverse   if   the   polynomial     does   not   divide   it. (NIST   2001)    For   these (x)  a  x + 1  
operations,   the   AES   algorithm   specifies   a   fixed   four-term   polynomial   that   does   have   an  
inverse: (NIST   2001)  

 

(x) 03}x 01}x 01}x 02}  a = { 3 + { 2 + { + { (x) 0B}x 0D}x 09}x 0E}  a 1− = { 3 + { 2 + { + {  
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Section   8   :   Notation   and   Conventions  

8.1   :   Inputs   and   Outputs  
 

The   specified   input   parameters   and   output   resultants   of   the   AES   algorithm   are   represented   by  
sequences   of   binary   digits,   or   "bit"   values. (NIST   2001)     Binary   values   are   sequences   defined   by   a  
base-2   numeral   system   represented   by   the   concatenation   of   any   mechanism   possessing   one   of  
two   exclusive   states   as   described   in   Section   1.1.   Bit   sequences   in   this   document   will   be  
represented   as   ordered   series   comprised   of     and     states.  1  0   

 

When   we   act   upon   a   fixed   length   series   of   bits   we   speak   of   processing   a   singular   "block". (NIST  

2001)    The   number   of   bits   a   given   fixed   length   series   contains   is   then   known   as   it's   block   length,   or  
block   size. (Paar   &   Pelzi   2009)    The   block   length   specified   by   the   AES   is   128   bits,   meaning   that   the  
plaintext   and   ciphertext   blocks   processed   and   output   by   the   AES   may   only   be   128   bits   in  
size. (NIST   2001)    Contrarily,   the   cipher   key   length   specified   by   the   AES   may   vary   between   128,   192  
or   256   bits   but   must   remain   fixed   during   a   given   execution. (NIST   2001)  

 

The   AES   algorithm   is   a   subset   of   the   Rijndael   block   cipher. (Daemen   &   Rijmen   2002)    Rijndael   supports  
variable   block   and   key   lengths,   allowing   both   to   be   specified   as   any   multiple   of   32,   between   128  
and   256   bits. (Daemen   &   Rijmen   2002)    The   reason   for   AES's   specific   parameterization   of   the   Rijndael  
cipher   is   due   to   the   focus   of   testing   during   the   AES   selection   process. (NIST   2001)     As   other  
configurations   were   not   subject   to   the   same   rigorous   testing   and   peer   review,   they   are   not  
permitted   by   this   standard. (LFS   2018)  

 

The   location   of   each   bit   in   a   given   sequence   is   defined   using   a   zero-based   ordering. (NIST   2001)    The  
initial   element   is   assigned   a   base   index   of   0   and   each   subsequent   element   is   indexed   by   the  
subsequent   natural   number   from     to   .   This   distinction   is   represented   by  0 sequence length 1)  ( −   
subscripting   the   index,   .   Thusly,   a   single   bit   is   specified   by   ,   where   and   , i bi  ∈ {1, }  b 0  ≤ i 28  0 < 1  

  or     depending   on   the   configuration (NIST   2001)  ≤ i 92  0 < 1  ≤ i 56  0 < 2   

 

The   smallest   bit   sequence,   or   basic   processing   unit,   addressed   by   the   operations   comprising  
the   AES   is   known   as   a   byte. (NIST   2001)    A   byte   most   commonly   consists   of   a   length   eight   bit  
sequence   representative   of   a   single   entity,   in   this   case   we   implement   eight   bit   bytes   as  
operands   and   resultants   during   the   computations   performed   by   AES.   

 

AES   byte   value   representations   result   from   concatenation   of   eight   bits   enclosed   by   braces:  
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, b , b , b , b , b , b , b }  { b7  6  5  4  3  2  1  0   

 

where   individual   bit   values   .   During   the   computations   performed   by   AES,   bytes   values  ∈ {0, 1}  b   
are   interpreted   as   finite   field   elements   of   polynomial   representation:  

 

x  x  x  x  x  x  x  xb7
7 + b6

6 + b5
5 + b4

4 + b3
3 + b2

2 + b1
 + b0 = ∑

7

1=0
bi

i  

 

For   example,     identifies   the   specific   finite   field   element   . 10100011}  { x  x7 +  5 + x + 1  

 

Binary-coded   values   of   increasing   length   become   difficult   for   human  
comprehension   and   manipulation.   Hexadecimal   numerals   of   base   16  
are   a   popular   alternative,   allowing   direct   conversion   from   four   binary  
digits   to   a   single   hexadecimal   digit.   Table   21   provides   a   reference   for  
this   conversion.   Hexadecimal   representation   of   byte   values   is  
convenient.   A   series   of   eight   bits   is   divided   into   the   four   leftmost   higher  
indexed   bits   and   the   four   rightmost   lower   indexed   digits.   A   single   byte  
value   in   the   range   of   [0000   0000,   1111   1111]   then   becomes   [00,   ff]  
under   hexadecimal   representation.   

 

 

For   example,   the   byte   value     is   denoted   . 01010011}  { A3}  {  

 

Bit   Pattern  Character  
0000  0  
0001  1  
0010  2  
0011  3  
0100  4  
0101  5  
0110  6  
0111  7  
1000  8  
1001  9  
1010  A  
1011  B  
1100  C  
1101  D  
1110  E  
1111  F  

Table   21  
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8.2   :   Arrays  
 

During   the   execution   of   AES,   byte   operands   are   held   in   abstract   collections   known   as  
arrays. (NIST   2001)    Formally,   arrays   are   zero   indexed   data   structures   representing   disk   information  
with   some   mechanism   of   addressability   by   the   CPU,   necessary   for   data   processing. (Greenlaw   &   Hoover  

1998)    While   an   array   may   hold   any   data   object,   byte   arrays   partition   bit   sequences   into   contiguous  
groups   of   eight,   providing   each   with   an   index   .   The   block   and   key   lengths   described n  
previously,   specifically   128,   192,   and   256   bits,   may   also   be   referenced   by   their   byte   lengths   16,  
24,   and   32   respectively. (NIST   2001)  

 

For   AES   operand   and   resultant   arrays,   denoted   by   ,   constituent   bytes   are   referenced   in   two a  
ways.   Similar   to   the   representation   of   individual   elements   of   a   bit   sequence,   the   nth-element   of  
a   given   array     is   expressed   ,   where     is   the   array   index,   as   well,     also   expresses   an a an n [n]a  
individual   byte   of   index   .   For   either   representation   the   range   of     reflects   cipher   block   or   key n n  
length:   128   bits,   ;   192   bits,   ;   256   bits,   . (NIST   2001)  ≤ n 6  0 < 1  ≤ n 4  0 < 2  ≤ n 2  0 < 3  

 

Arrays   of   bytes   are   represented: (NIST   2001   p.   8)  

 

 a  a  ... a  a0 1 2 15  

 

The   ordering   of   individual   bits   can   be   seen   from   the   128-bit   input   sequence: (NIST   2001   p.   8)  

 

input input  ... input input  input0 1 2 126 127  

 

An   array   of   bytes   and   the   bit   locations   within: (NIST   2001   p.   9)  

  

, input , ... , input };a  {input0 =  0  1   7  

, input , ... , };a  {input1 =  8  9  input15  

⋮  

, input , ... , input };a  {input15 =  120  121   127  
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The   pattern   in   general: (NIST   2001   p.   9)  

  

. , , ... , input }  a  {inputn =  8n input8n+1   8n+7  

 

Input   bit   sequence  0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  ...  

Byte   Number  0  1  2  ...  

Byte   Position  7  6  5  4  3  2  1  0  7  6  5  4  3  2  1  0  7  6  5  4  3  2  1  0  ...  

Table   22  
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8.3   :   The   State  
 

Cipher   transformations   performed   by   the   AES   are   modeled   by   a   two   dimensional   array   called  
the   State.   Two   dimensional   array   position   is   specified   by   the   use   of   two   indices.   The   State  
consists   of   four   rows   of   bytes,   each   containing     bytes,   where     is   the   block   length   divided bN bN  
by   32. (NIST   2001)    To   express   an   element   of   the   State   s,   we   use     or   where   s   is   a   given sr, c [r, ]s c  
State,   r   is   the   row   number     and     is   the   column   number   . (NIST   2001)    This  ≤ r  0 < 4 c  ≤ c b  0 < N  
standard   specifies   a   single   block   length   of   128   bits,   thusly     is   fixed   at   4   and   the   value   of   c   is bN  
always   in   the   range   . (NIST   2001)  ≤ c  0 < 4  

 

Upon   execution,   the   AES   maps   the   byte   elements   of   input   blocks,   onto   the , in , ..., in }  {in0  1   15  
state   array   in   the   order   this   transformation   is   modeled , s , , , s , s , , ...,s0, 0  1, 0  s2, 0  s3, 0  0, 1  1, 1  s2, 1  s3, 1  
by: (NIST   2001)  

 

[r, c] in[r 4c]                       for 0 ≤ r    and   0 ≤ c b  s  =  +  < 4 < N  

 

AES   transformations   perform   necessary   encryption   or   decryption   and   the   state   bytes   are  
mapped   onto   the   output   array,   : (NIST   2001) , out , ..., out }  {out0  1   15  

 

ut[r 4c] s[r, c]                    for 0 ≤ r    and   0 ≤ c b  o +  =   < 4 < N  

 

This   process   is   depicted   in   Figure   19,   below.  
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Figure   19  

 

The   State   can   be   represented   as   an   array   of   it's   columns. (NIST   2001)    While   8-bit   bytes   are   the  
smallest   operand   addressed   by   AES,   many   of   the   procedures   operate   on   an   entire   State  
column. (NIST   2001)    As   the   AES   fixes   row   number     at   four,   a   State   column   possesses   4   bytes   and r  
is   thus   a   32-bit   vector. (NIST   2001)  

 

This   specification   defines   32-bit   vectors   as   a   single   "word",   and   provides   an   alternate   definition  
of   the   State   as   a   one   dimensional   array   of   32-bit   words,   of     length. (NIST   2001)    The   column bN  
number     is   then   the   index   of   a   given   word   array,   while   row   number   r   indexes   an   individual c  
word's   constituent   bytes. (NIST   2001)    A   single   word   is   specified   by   ,   where   and   the   State wi  ≤ i  0 < 4  
may   be   defined   as   an   array   of   four   words     with   constituent   bytes: w , w , w , w }  { 0  1  2  3  

 

{s , s , , }w0 =  0, 0  1, 0  s2, 0  s3, 0  

{s , s , , }w1 =  0, 1  1, 1  s2, 1  s3, 1  

{s , s , , }w2 =  0, 2  1, 2  s2, 2  s3, 2  

{s , s , , }w3 =  0, 3  1, 3  s2, 3  s3, 3  

 

128-bit   plaintext   and   ciphertext   blocks   can   also   be   defined   as   consisting   of     32-bit   words. bN = 4  
Cipher   keys   are   also   defined   by   their   word   length,   consisting   of     32-bit   words,   where kN  
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.   The   AES   has   specified   the   key   lengths   of   128,   192,   and   256   bits   defining   key k 4, , }N = { 6 8  
spaces   of   . (Daemen   &   Rijmen   2002)    The   Rijndael   cipher,   of   which   AES   is   a   subset,   has   a  ℤ2

128  ℤ2
192  ℤ2

256  
key   space   of . (Daemen   &   Rijmen   2002)  ℤ2

32 Nk*  

 

Like   Rijndael   the   AES   is   a   key-iterated   block   cipher,   the   state   undergoes   a   number   of  
transformation   rounds,   or   iterations,   defined   by   the   key   length.   The   number   of   these   rounds   is  
denoted   ,   where   is   10,   12,   or   14,   for     of   4,   6,   or   8. (NIST   2001)    See   the   effect   of     in rN rN kN kN  
Figure   20   below.  

 

 

Figure   20  

  

107  



8.4   :   The   Substitution   Box   (S-box)  
 

The   Substitution   box   (S-box)   is   a   cryptographic   primitive,   typically   included   as   a   component   in  
block   cipher   design.   This   document   will   address   the   AES   implementation   alone.   Desirable   is   a  
substitution   which   makes   the   relationship   between   output   ciphertext   and   input   key   augmented  
plaintexts   as   complex   as   possible.   This   property,   known   as   confusion,   is   one   of   two   governing  
the   operation   of   a   secure   cryptographic   cipher   first   identified   by   Claude   Shannon   in   his   1945  
report   A   Mathematical   Theory   of   Cryptography. (Shannon   1945)  

 

In   general,   an   n×m   S-Box,   input   blocks   of   size   n   are   substituted   with   output   blocks   of   size   m,  
implemented   as   a   lookup   table   with   2 n    m-bit   members.   We   study   the   structure   of   the   particular  
S-box   implemented   by   the   Rijndael   cipher,   of   which   the   Advanced   Encryption   Standard   (AES)  
cryptographic   algorithm   is   a   subset.   This   S-Box   is   based   on   an   invertible   transformation   applied  
on   the   Galois   field   .   This   transformation   generates   an   8×8   S-box, F (2 )  G 8  

,   implemented   as   a     member   square   lookup   table   of   size   16.The (x) GF (2 ) →GF (2 )  S :  8 8 56  28 = 2  
AES   S-box   models   a   function   on   polynomials   over     denoted     mapping F (2)  G (b)  b′ = S  
representative   8-bit   inputs   ,   to   8-bit   outputs   . b  b′  

 

Invented   by   Kaisa   Nyberg,   the   AES   S-box   transformation   is   known   as   the   "Nyberg   S-box". (Nyberg  

1991)    The   transformation   can   be   expressed   by   the   function   . (NIST   2001)    We   find   the  Ab  b′ =  1− ⊕ c  
multiplicative   inverse   of   the   Input   in   Rijndael's   finite   field,  

,   then   perform   an   affine   transformation. (Daemen   &   Rijmen F (2 ) GF (2)∣[8] (x  x  x  x 1)  G 8 =  8 +  4 +  3 +  +   

2002)    The   S-Box   transformation   is    be   expressed   in   matrix   form   by   Figure   21   below:  

 

 

Figure   21  

 

where   bits   are   the   multiplicative   inverse   ,   and   bits      are   ,   the b , ..., b }  { 7   0 b 1− b , ..., b }  { ′7   ′0  b′  
result.  
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However,   this   equation   is   not   to   be   interpreted   as   the   sort   matrix   multiplication   used   for   linear  
algebra   computations.   As   product   vector   members   would   incorrectly   be   the   summation   of   each  
row   member   multiplied   by   the   column   member   of   corresponding   index,   as   described   in   Section  
5.7.   In   the   case   of   the     representation   selected   for   the   AES,   we   recall   that   the   addition   of F (2 )  G 8  

  is   a   bitwise   addition   ,   or   bitwise   XOR   and   multiplication   is   done   modulo c od 2  m  
,   as   described   in   Sections   7.7,   7.8.   Product   vector   members   are   the x  x  x  x 1)  ( 8 +  4 +  3 +  +   

XOR   of   each   result   of   modular   multiplication   between   row   and   column   members   of  
corresponding   index.   For   example, has   a   multiplicative   inverse   in     of   , 95}{ F (2 )  G 8 95} 8A}{ 1− = {  
or   in   binary. (NIST   2001)    The   full   transformation   of   is   shown   by   Figure   22   below: 10001010}  {  

 

 

Figure   22  

 

The   entity   which   models   a   cryptographic   S-box   is   implemented   as   a   table   lookup,   defined   by   a  
square   matrix   of   size   16,   shown   by   Table   23,   below. (NIST   2001)    The   AES   S-box   lookup   values   can  
then   be   constructed   in   three   steps   by   first   supplying   all   potential   input   values   over   the   Rijndael's  
Galois   field   ( )   then   composing   two   transformations: (NIST   2001) F (2 )  G 8   

 

1.   Initialize   the   S-box   with   all   values   in     represented   by   256   byte   values   b i    =   {0,   1,   …, F (2 )  G 8  
255}   in   ascending   sequence.   When   represented   in   a   square   matrix   the   first   row   contains   {00},  
{01},   …,   {0F};   the   second   {10},   {11},   …   {1F};   and   so   on.   By   this   method,   the   value   of   the   byte   at  
column   x,   row   y,   is   {xy}.   These   values   then   undergo   two   transformations.  

 

2.   We   first   map   the   value   {00}   to   itself,   then   for   each   subsequent   value   we   determine   the  
multiplicative   inverse   in   the   finite   field   . F (2 )  G 8  

 

3.   Each   output   byte   produced   is   considered   as   the   8   bit   collection  
,   to   be   transformed   by   the   following     affine   matrix: (NIST   2001) , b , b , b , b , b , b , b }  { b7  6  5  4  3  2  1  0 F (2 )  G   
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 b′i = bi⊕ b(i+4)mod8 ⊕ b(i+5)mod8 ⊕ b(i+6)mod8 ⊕ b(i+7)mod8 ⊕ ci for   ,  ≤ i 8  0 <   

 

Where     is   the   ith   bit   of   the   value (NIST   2001) ci 63}  { , c , c , c , c , c , c , c } 01100011}  { c7  6  5  4  3  2  1  0 = {  

  

To   produce   the   inverse   S-box   seen   in   Table   24   we   reverse   the   operations   of   the   S-box,   by   first  
calculating   the   inverse   affine   transformation   followed   by   the   multiplicative   inverse,   as   in   Figure  
23,   below. (NIST   2001)  

 

Figure   23  

 

 

 

SBox  y  
00  01  02  03  04  05  06  07  08  09  0a  0b  0c  0d  0e  0f  

x  

00  63  7c  77  7b  f2  6b  6f  c5  30  01  67  2b  fe  d7  ab  76  
10  ca  82  c9  7d  fa  59  47  f0  ad  d4  a2  af  9c  a4  72  c0  
20  b7  fd  93  26  36  3f  f7  cc  34  a5  e5  f1  71  d8  31  15  
30  04  c7  23  c3  18  96  05  9a  07  12  80  e2  eb  27  b2  75  
40  09  83  2c  1a  1b  6e  5a  a0  52  3b  d6  b3  29  e3  2f  84  
50  53  d1  00  ed  20  fc  b1  5b  6a  cb  be  39  4a  4c  58  cf  
60  d0  ef  aa  fb  43  4d  33  85  45  f9  02  7f  50  3c  9f  a8  
70  51  a3  40  8f  92  9d  38  f5  bc  b6  da  21  10  ff  f3  d2  
80  cd  0c  13  ec  5f  97  44  17  c4  a7  7e  3d  64  5d  19  73  
90  60  81  4f  dc  22  2a  90  88  46  ee  b8  14  de  5e  0b  db  
a0  e0  32  3a  0a  49  06  24  5c  c2  d3  ac  62  91  95  e4  79  
b0  e7  c8  37  6d  8d  d5  4e  a9  6c  56  f4  ea  65  7a  ae  08  
c0  ba  78  25  2e  1c  a6  b4  c6  e8  dd  74  1f  4b  bd  8b  8a  
d0  70  3e  b5  66  48  03  f6  0e  61  35  57  b9  86  c1  1d  9e  
e0  e1  f8  98  11  69  d9  8e  94  9b  1e  87  e9  ce  55  28  df  
f0  8c  a1  89  0d  bf  e6  42  68  41  99  2d  0f  b0  54  bb  16  

Table   23  
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InvSBox  y  
00  01  02  03  04  05  06  07  08  09  0a  0b  0c  0d  0e  0f  

x  

00  52  09  6a  d5  30  36  a5  38  bf  40  a3  9e  81  f3  d7  fb  
10  7c  e3  39  82  9b  2f  ff  87  34  8e  43  44  c4  de  e9  cb  
20  54  7b  94  32  a6  c2  23  3d  ee  4c  95  0b  42  fa  c3  4e  
30  08  2e  a1  66  28  d9  24  b2  76  5b  a2  49  6d  8b  d1  25  
40  72  f8  f6  64  86  68  98  16  d4  a4  5c  cc  5d  65  b6  92  
50  6c  70  48  50  fd  ed  b9  da  5e  15  46  57  a7  8d  9d  84  
60  90  d8  ab  00  8c  bc  d3  0a  f7  e4  58  05  b8  b3  45  06  
70  d0  2c  1e  8f  ca  3f  0f  02  c1  af  bd  03  01  13  8a  6b  
80  3a  91  11  41  4f  67  dc  ea  97  f2  cf  ce  f0  b4  e6  73  
90  96  ac  74  22  e7  ad  35  85  e2  f9  37  e8  1c  75  df  6e  
a0  47  f1  1a  71  1d  29  c5  89  6f  b7  62  0e  aa  18  be  1b  
b0  fc  56  3e  4b  c6  d2  79  20  9a  db  c0  fe  78  cd  5a  f4  
c0  1f  dd  a8  33  88  07  c7  31  b1  12  10  59  27  80  ec  5f  
d0  60  51  7f  a9  19  b5  4a  0d  2d  e5  7a  9f  93  c9  9c  ef  
e0  a0  e0  3b  4d  ae  2a  f5  b0  c8  eb  bb  3c  83  53  99  61  
f0  17  2b  04  7e  ba  77  d6  26  e1  69  14  63  55  21  0c  7d  

Table   24  

While   all   functions   impact   the   security   of   the   AES   block   cipher,   as   the   only   nonlinear  
transformation,   the   S-box   plays   a   crucial   role. (Easttom   2014)    For   this   reason,   proper   S-box   design  
criteria   are   of   the   most   importance,   as   it   is   these   design   criteria   that   work   to   make   the   AES  
resistant   to   linear   cryptanalysis,   differential   cryptanalysis,   and   algebraic   attacks. (Grocholewska-Czurylo  

2011)    Non-linearity   is   achieved   by   ensuring   that   the   maximum   input-output   correlation   amplitude   is  
as   small   as   possible   and   that   the   maximum   difference   propagation   probability   must   be   as   small  
as   possible. (Daemen   &   Rijmen   2002)    The   use   of   finite   field   operation   in   S-Box   construction   yields   linear  
approximation   and   difference   distribution   tables   that   are   close   to   uniform. (SKABMB   2010)    The  
multiplicative   inverse   has   been   determined   to   be   highly   non-linear   and    the   substitution   is  
bijective,   to   ensure   invertibility   upon   decryption. (SKABMB   2010)     These   properties   provide   security  
against   differential   and   linear   attacks. (SKABMB   2010)  

 

While   the   AES   has   specification   for   only   a   single   S-Box   implementation, (NIST   2001)    the   Rijndael  
S-Box   allows   implementers   to   select   a   different   configuration, (Daemen   &   Rijmen   2002)    an   option   that  
allows   a   deeper   sense   of   security   for   those   suspicions   of   a   mathematical   backdoor   built   into   the  
cipher. (Katiyar   Jeyanthi   2019)    The   AES   is   able   to   provide   resistance   against   differential   and   linear  
cryptanalysis   if   an   S-Box   with   "average"   correlation   and   difference   propagation   properties   is  
used. (Krishnamurthy   Ramaswamy   2008)    Modern   S-Box'   cryptographic   strength   "is   critically   analyzed   by  
studying   the   properties   of   S-box   such   as   nonlinearity,   strict   avalanche,   bit   independence,   linear  
approximation   probability   and   differential   approximation   probability. (Farwa   Shah   Idrees   2016   p.   1)   
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Section   9   :   Functions  

9.1   :   Cipher  
 

This   section   details   a   method   by   which   mechanism   of   the   AES   cryptographic   transformations  
maybe   algorithmically   implemented.    As   a   key   iterated   product   cipher,   the   AES   executes   a  
number   of   round   function   iterations,   on   a   block   of   plaintext   bits ,   as   discussed   in   Section   3.3.  
E ach   round   transformation   is   executed   in   the   same   manner,   with   variance   provided   by   round  
values,   generally   called   round   constants   and   a   round   key.     The   AES   is   fundamentally   composed  
of   a   key   schedule   and   a   block   cipher.   The   AES   key   schedule   algorithm   calculates   round   keys  
and   the   AES   cipher   consists   of   the   round   function,   specifically   composed   of   four   byte-oriented  
transformations.   The   AES   cipher   is   specifically   a   key-iterated   block   cipher,   consisting   of   cipher  
block   transformation   rounds,   or   iterations,   defined   by   the   key   and   block   lengths.The   number   of  
rounds   is   determined   by: (NIST   2001)  

r  ax(Nb, Nk)  N = 6 + m   

 

Where     is   the   number   of   round   iterations,     is   the   number   of   32-bit   words   in   the   block,   and rN bN  
  is   the   number   of   32-bit   words   in   the   key. (NIST   2001)    Because     is   fixed   to   4   and     is   at   least kN bN kN  

4   by   the   AES   specification,   the   number   of   rounds   Nr,   is   always   determined   by   the   number   of  
bytes   in   the   key   . (NIST   2001) kN  

 

An   initial   AddRoundKey   precedes   the   iteration   of   Nr-1   rounds,   while   the   final   round   does   not  
include   the   MixColumns()   transformation. (NIST   2001)    These   functions   operate   on   arrays   provided   by  
the   State   and   RoundKey   pointers. (NIST   2001)    RoundKey   addressed   the   key   schedule   generated   by  
the   KeyExpansion()   function,   a   vector   consisting   of   4-byte   words. (NIST   2001)      RoundKey   words bN  
are   used   each   round   iteration. (NIST   2001)    The   State   transformations   and   KeyExpansion()   function  
referenced   below   are   defined   in   the   subsection   that   follow.   
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Cipher(State,RoundKey)  

    begin  

       AddRoundKey(State,   RoundKey)  

       for   i   =   1   to   Nr  

          Round(State,   RoundKey+Nb*i)  

       FinalRound(State,   RoundKey+Nb*Nr)  

end  

 

Round(State,RoundKey)  

    begin  

       SubBytes(State);  

       ShiftRows(State);  

       MixColumns(State);  

       AddRoundKey(round,   State,RoundKey);  

end  

 

FinalRound(State,   RoundKey)  

    begin  

       SubBytes(State)   ;  

       ShiftRows(State)   ;  

       AddRoundKey(round,   State,RoundKey);  

end  

Figure   24  

void   Cipher(State,   RoundKey)   {  

unsigned   char   round   =   0;  

AddRoundKey(0,   State,   RoundKey);  

 

for   (round   =   1;   round   <   Nr;   ++round)   {  

    SubBytes(State);  

    ShiftRows(State);  

    MixColumns(State);  

    AddRoundKey(round,   State,   RoundKey);  

    }  

 

    SubBytes(State);  

    ShiftRows(State);  

    AddRoundKey(Nr,   State,   RoundKey);  

}  

 

 

 

 

 

 

 

Figure   25  

The   AES   Cipher()   implements   a   round   function   composed   of   four   byte-oriented   transformations:  
(NIST   2001)  

SubBytes()   individual   byte   substitution   using   the   S-Box   lookup   table   

ShiftRows()   shifts   each   State   array   rows   by   a   unique   offset   

MixColumns()   mixes   each   State   array   column   

AddRoundKey()   adds   the   randomized   Round   Key   to   the   State    
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9.2   :   KeyExpansion  
 

KeyExpansion(word   cKey,   word   rKey,  
Nk)  

begin  

    word   temp  

    for   i   =   0   step   Nk  

       rKey[i]   =   cKey[i];  

    end   for  

    for   i   =   Nk   step   1   to   Nb*(Nr+1)  

       temp   =   rKey[i-1]  

       if   (i   mod   Nk   ==   0)  

          temp   =   SubWord(RotWord(temp))  

                    xor   Rcon[i/Nk]  

       else   if   (Nk   >   6   and   i   mod   Nk   ==   4)  

          temp   =   SubWord(temp)  

       end   if  

       rKey[i]   =   rKey[i-Nk]   xor   temp  

       end   for  

end  

 

The   function   SubWord(x)   applies   an  
S-Box   substitution   to   each   byte   of   an  
input   word. (Gladman   2003)  

 

The   function   RotWord(x)   converts   an  
input   word   [ ] , b , b , b  b3  2  1  0   

to   an   output   [ ]. (Gladman   2003) , b , b , b  b0  3  2  1  

 

Figure   26  

KeyExpansion(byte*   rKey,   byte*   cKey)   {  

byte   r,   c,   k,   tmp,   t[4];  

for   (r=0;r<Nk*4;r++)   rKey[r]=cKey[r];  

for   (r=Nk,   k=(r-1)*4;   r<4*(Nr+1);   r++)   {  

    t[0]=rKey[k];t[1]=rKey[k+1];  

    t[2]=rKey[k+2];t[3]=rKey[k+3];  

 

    if   (r   %   Nk   ==   0)   {  

       tmp   =   Sbox[t[0]];     t[0]   =   Sbox[t[1]];  

       t[1]   =   Sbox[t[2]];      t[2]   =   Sbox[t[3]];  

       t[3]   =   tmp;  

       t[0]=t[0]   ̂    Rcon[r   /   Nk];  

       }  

    #if   defined(AES256)  

    if   (r%Nk==4){  

       t[0]=Sbox[t[0]];t[1]=Sbox[t[1]];  

       t[2]=Sbox[t[2]];t[3]=Sbox[t[3]];  

       }  

    #endif  

    c=r*4;     k=(r   -   Nk)*4;  

    rKey[c]=rKey[k]   ̂    t[0];  

    rKey[c+1]=rKey[k+1]   ̂    t[1];  

    rKey[c+2]=rKey[k+2]   ̂    t[2];  

    rKey[c+3]=rKey[k+3]   ̂    t[3];  

    }  

}  

Figure   27  
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The   AES   and   the   Rijndael   algorithm,   of   which   the   AES   is   a   subset,   are   classified   as   Product  
Ciphers.    We   introduced   the   structure   of    product   ciphers    in   Section   3.3.   Product   ciphers   execute  
a   number   of   round   iterations,   e ach   round   transformation   is   executed   in   the   same   manner,   with  
variance   provided   by   round   values,   generally   called   round   constants   and   a   round   key. (Van   Tilborg   &  

Jajodia,   2011)     A   key   schedule   algorithm   calculates   round   keys   through   the   use   of   simple  
cryptographic   operations,   such   as   S-boxes   and   P-boxes,   on   the   input   cryptographic   key. (Van   Tilborg  

&   Jajodia,   2011)    KeyExspanison()   is   the   AES   key   schedule.   

 

The   AES   Cipher   is   parameterized   with   a   set   of     input   words   of   key   material,   and   each   of   the bN  
Nr   rounds   requires     words   of   derived   key   data. (NIST   2001)    Thus,   KeyExpansion()   results   in   a bN  
total   of     words. (NIST   2001)    The   Key   Expansion   routine   takes   the   Cipher   Key   pointer b(Nr )  N + 1  
cKey,   which   addresses   the   input   key   material,   and   the   Round   Key   pointer   rKey,   which  
addresses   the   round   key   memory.   KeyExpansion()   uses   the   rKey   pointer   to   fill   the   linear   array,  
denoted   rKey[i],   with   i   in   the   range   0   ≤   i   <   Nb(Nr   +   1).   

 

The   first     words   of   the     are   copied   from   the   contents   of   the   .   Each   subsequent kN Keyr Keyc  
word,   rKey[i],   is   equal   to   the   XOR   of   rKey[i-1]   and   rKey[i-Nk].      Prior   to   this   XOR,   for   words   of   a  
position   that   is   a   multiple   of   ,   if(i%Nk==0),   a   left   cyclic   shift,   an   SBox[]   table   lookup   to   the kN  
word   four   bytes,   and   an   XOR   with   a   round   constant,   Rcon[i],   is   applied   to   rKey[i-1]. (NIST   2001)    The  
round   constant   word   array,   Rcon[i],   contains   the   values   given   by   [x (i-1) ,{00},{00},{00}],   with   x (i-1)  
being   powers   of   x   in   the   field   GF(2 8 ). (NIST   2001)  

 

It   must   also   be   known   that:  

● KeyExpansion()   for   256-bit   Cipher   Keys   (Nk   =   8)   is   different,   if   Nk   =   8   and   i%Nk   ==4,   for  
every   fourth   word,   table   lookups   are   applied   to   rKey[i-1]   prior   to   the   XOR.   

● The   KeyExpansion   routine   does   not   need   an   inverse   as   the   same   key   material  
generated   for   encryption   is   required   by   decryption.  
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9.3   :   SubBytes   
 

The     transformation   is   a   non-linear   byte   substitution   that   operates   independently   on ubBytes()  S  
each   State   byte. (NIST   2001)    As   the   only   non-linear   transformation   implemented,   SubBytes()  
guarantees   the   non-linearity   of   the   AES. (NIST   2001)  

 

SubBytes(State)  

begin  

for   i   =   0   step   1   4*Nb   

State i    =   Sbox[   State i    ]  

end   for  

end  

 

 

Figure   28  

static   void   SubBytes(State*   State)   {  

unsigned   char   r,   c;  

for   (r   =   0;   r   <   4;   ++r)   {  

    for   (c   =   0;   c   <   4;   ++c)   {  

       (*State)[c][r]   =   Sbox[(*State)[c][r]];  

       }  

    }  

}  

 

Figure   29  

 

Each   State   byte   is   mapped   to   a   new   value   by:   (NIST   2001)  Ab  b′ =  1− ⊕ c  

 

This   transformation   has   been   previously   defined   as   an   AES   S-Box   transformation   of   the  
complete   State   matrix.   As   the   range   of   the   S-Box   is   256,   its   small   size   allows   specification  
implementers   many   options. (Daemen   &   Rijmen   2002)    Commonly,   rather   than   performing   the   complex  
operations   which   produce   S-Box   values,   for   each   value   we   can   precompute   the   resultant   for  
storage   in   an   array. (NIST   2001)    The   AES   calls   this   array   a   lookup   table. (NIST   2001)    The   S-Box   then  
becomes   a   square   two   dimensional   lookup   table   of   size   16,   containing   a   permutation   of   the   byte  
values   in   GF(28). (NIST   2001)    SubBytes()   uses   the   individual   contents   of   a   State   element   as   an   index  
into   the   S-Box   substitution   table. (NIST   2001)    During   this   transformation   the   value   of   each   State   byte  
is   split   into   the   upper   and   lower   four   bits. (NIST   2001)    These   two   new   values   serve   as   the   S-Box  
indices. (NIST   2001)    The   upper   four   bits   determine   the   S-Box   row   location   and   the   lower   four   bits  
determine   the   S-Box   column   location. (NIST   2001)    S-Box   indices   are   represented   in   hex   as   values   of  
the   range   . (NIST   2001)    Supposing   a   State   byte   s 0,   0    had   value ,   seperate   each 0 )  ( − f 11011001}  {  
index   (d,   9)   and   map   to   the   unique   S-Box   value   or   ,   illustrated   by   Figure   30. 35}  { 00110101}  {   
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Figure   30  

 

InvSubBytes()   is   the   inverse   of   SubBytes(). (NIST   2001)    This   means   we   apply   the   inverse   S-Box   to  
each   byte   of   the   State. (NIST   2001)    Their   mechanism   is   equivalent,   the   only   difference   is   the   lookup  
table   referenced,   S-box   by   SubBytes()   and   InvS-box   by   InvSubBytes().   A   full   State  
transformation   using   SubBytes()   then   InvSubBytes()   is   shown   by   Figure   31   below.  

 

Figure   31  
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9.4   :   ShiftRows  
 

ShiftRows(State)  
begin  
    for   r   =   0   to   3  
       for   c   =   0   to   3  
          State[c]   =   
             State[r,   (c   +   h(r,Nb))   mod   Nb]  
       end   for  
    end   for  
end  

Figure   32  

ShiftRows   provides   diffusion,   performing   a  
transposition   on   the   bytes   of   each   State  
row. (Daemen   &   Rijmen   2002)    ShiftRows   applies   a   left  
cyclic   shift    to   each   byte   in   a   given   row,   moving  
it   to   the   next   "lowest"   position,   with   the  
exception   of   the   byte   in   the   "lowest"   position  
which   is   shifted   out   of   the   state   array   to   "wrap"  
and   appear   in   the   vacant   "highest"   position. (NIST  

2001)    The   magnitude   of   each   shift   is   a   factor   of  
the   row   number   r,   and   block   length   , bN  
determined   by   the   relationship:  

 

 s′r,c = sr,(c+ shif t (r, Nb)) mod Nb  

 

or 0 r 4 and 0 ≤ c Nb  f <  <  <   

 

As   the   AES   specifies   ,   coincidentally   the bN = 4  
shift   offset   is   equal   to   the   row   number   , r  

.  ≤ r 4  0 <    

 

The   mechanism   of   this   operation   is   depicted  
diagrammatically   by   Figure   34,   below.  

 

The   four   offsets   have   to   be   unique   for   optimal  
diffusion.    Since   ShiftRows   moves   the   bytes   of  
each   column   to   four   different   columns,   it   is  
diffusion   optimal.   "Diffusion   optimality   is  
important   in   providing   resistance   against  
differential   and   linear   cryptanalysis." (Daemen   &   Rijmen  

2002   p.   37)  

static   void   ShiftRows(State*   State)  
{  
   unsigned   char   temp;  
 
   temp             =   (*State)[0][1];  
   (*State)[0][1]   =   (*State)[1][1];  
   (*State)[1][1]   =   (*State)[2][1];  
   (*State)[2][1]   =   (*State)[3][1];  
   (*State)[3][1]   =   temp;  
 
   temp             =   (*State)[0][2];  
   (*State)[0][2]   =   (*State)[2][2];  
   (*State)[2][2]   =   temp;  
 
   temp             =   (*State)[1][2];  
   (*State)[1][2]   =   (*State)[3][2];  
   (*State)[3][2]   =   temp;  
 
 
   temp             =   (*State)[0][3];  
   (*State)[0][3]   =   (*State)[3][3];  
   (*State)[3][3]   =   (*State)[2][3];  
   (*State)[2][3]   =   (*State)[1][3];  
   (*State)[1][3]   =   temp;  
}  
 

Figure   33  
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Figure   34  

 

InvShiftRows()   is   the   inverse   of   the   ShiftRows()   transformation. (NIST   2001)     As   before,   the   first   row,  
,   is   not   shifted   while   the   bytes   in   the   last   three   State   rows,   ,   are   cyclically   shifted  r = 0  1, ,  r =  2 3  

in   the   manner   described   before. (NIST   2001)    The   bottom   three   rows   are   shifted   by   b shif t(r, Nb)  N −    
bytes,   where   the   shift   value     depends   on   the   row   number.   This   is   shown   by   Figure   35 hif t(r, b)  s N  
below,   and   is   given   by   equation: (NIST   2001)  

  for     and   ,  s′r,(c+ shif t (r, Nb)) mod Nb = sr,c  0 < r < 4  ≤ c b  0 < N  

 

Figure   35  

  

119  



9.5   :   MixColumns  
 

MixColumns(State)  

begin  

    byte   t[4]  

    for   c   =   0   to   3  

       for   r   =   0   to   3  

          t[r]   =   state[r,c]  

       end   for  

       for   r   =   0   to   3  

          state[r,c]   =   

          GM(0x02,   t[r])   xor  

          GM(0x03,   t[(r   +   1)   mod   4])   xor  

          t[(r   +   2)   mod   4]   xor   

          t[(r   +   3)   mod   4]  

       end   for  

    end   for  

end  

 

 

 

Figure   36  

xt(a) ((a&0x80)   ?   ((a<<1)^0x1b)   :   (a<<1))  

 

static   void   MixColumns(State*   State)   {  

unsigned   char   t0,   t1,   t2,   t3,   t,   r;  

 

for   (r   =   0;   r   <   4;   ++r)   {  

 

    t0   =   State[0]   ̂    State[1];  

    t1   =   State[1]   ̂    State[2];  

    t2   =   State[2]   ̂    State[3];  

    t3   =   State[3]   ̂    State[0];  

    t   =   t0   ̂    t2;  

 

    State[0]   ̂ =   xt(t0)   ̂    t;  

    State[1]   ̂ =   xt(t1)   ̂    t;  

    State[2]   ̂ =   xt(t2)   ̂    t;  

    State[3]   ̂ =   xt(t3)   ̂    t;  

}  

}  

Figure   37  

 

The     transformation   sequentially   processes   each   of   the   four   State   columns ixColumns()  M  
denoted   . (NIST   2001)      operates   on   each   of   the   four   4-byte   word c , , c , c }  { 0  c1  2  3 ixColumns()  M  
columns    which   encompass   all   sixteen   AES   state   values. (NIST   2001)    Due   to   the   mechanism   of   this  
transformation,   each   byte   in   the   input   affects   all   four   bytes   of   the   output,   such   that  

  provides   diffusion. (Daemen   &   Rijmen   2002) ixColumns()  M  

 

The     transformation   applies   Modular   Multiplication   in   Rijndael's   Galois   field. (NIST ixColumns()  M  

2001)    This   mechanism   is   described   in   full   by   Section   7.9.   Each   column   is   a   word,   represented   via  
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four-term   polynomial   with   coefficients   over   GF(2 8 ).     Under   the   AES,   polynomials   over   GF(2 8 )   are  
multiplied   by   a   fixed   polynomial   modulo   . (NIST   2001) (x) 3x  a =  3 + x2 + x + 2  x4 + 1  

 

Figure   38,   below,   shows   how   this   can   be   written   as   the   matrix   multiplication   : (x) a(x) (x)  s′ =  ⊗ s  

 

 

Figure   38  

 

An   equivalent   system   of   equations   achieves   the   result   of   this   multiplication   shown   by   Figure   39,  
below,   the   four   bytes   in   a   column   are   solved   for   by   the   following: (NIST   2001)  

  

 

Figure   39  

 

All   AES   operations   are   done   in   the   Galois   field   GF(2 8 ).   Addition   is   an   exclusive   or   (XOR)  
operation   as   explained   in   Section   7.7   which   we   will   use   the   symbol   ⊕   to   represent.  
Multiplication   is   a   complex   operation   as   defined   in   Section   7.8   which   we   will   use   the   symbol   ⦁   to  
represent.   For   the   sake   of   explanation   we   temporarily   use   GM()   as   an   abstraction   for   a   GF(2 8 )  
multiplication   function.   GM()   takes   two   GF(2 8 )   field   members   and   returns   their   product   under  
AES   GF(2 8 )   multiplication.   Thus,   GM()   usage   below   implements   the   GF(2 8 )   multiplication  
defined   in   Section   7.8.   Furthermore,   c   defines   a   column   position   counter,   {0,1,2,3}.   s   defines   a  
four   byte   array   representing   the   state   column   before   the   AES   MixColumns   transformation.   with  
byte   values   represented   by   s[c]   =   {s[0],s[1],s[2],s[3]}.   s'   defines   a   four   byte   array   representing  
the   state   column   after   the   AES   MixColumns   transformation.   with   byte   values   represented   by  
s'[c]   =   {s'[0],s'[1],s'[2],s'[3]}.  
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The   state   array   can   be   arranged   in  
memory   such   that   each   state   column   is   a  
four   byte,   32-bit   word,   c[3]   to   c[0].   The  
mixColumns   transformation   is   then:    (Gladman  

2003   p.   16)   

 

By   our   notation:   

 

 

 

 

Simplify   by   : M (s[n], ) s[n]  G 1 =   

Multiplication   by   1   is   multiplication   by   the  
identity   element   which   leave   a   member  
unchanged.  

 

 

Simplify   by  
: M (s[n], ) GM (s[n], ) ⊕ s[n]  G 3 =  2  

Multiplication   by   3   is   equivalent   to  
Multiplication   by   2   and   an   XOR,  

 

 

Simplify   by  
: M (x, )⊕GM (y, ) M (x⊕y, )  G 2 2 = G 2   

Due   to   the   associative   and   distributive  
properties,   we   perform   the   XOR   of   GM  
parameters   first,   to   reduced   GM   calls   by  
half.   

c[3]′   =   {02}   •   c[3]   ⊕   {03}   •   c[0]   ⊕   c[1]   ⊕   c[2]  

c[2]′   =   {02}   •   c[2]   ⊕   {03}   •   c[3]   ⊕   c[0]   ⊕   c[1]  

c[1]′   =   {02}   •   c[1]   ⊕   {03}   •   c[2]   ⊕   c[3]   ⊕   c[0]   

c[0]′   =   {02}   •   c[0]   ⊕   {03}   •   c[1]   ⊕   c[2]   ⊕   c[3]  

 

 

s'[0]=GM(s[0],2)⊕GM(s[3],1)⊕GM(s[2],1)⊕GM(s[1],3);  

s'[1]=GM(s[1],2)⊕GM(s[0],1)⊕GM(s[3],1)⊕GM(s[2],3);  

s'[2]=GM(s[2],2)⊕GM(s[1],1)⊕GM(s[0],1)⊕GM(s[3],3);  

s'[3]=GM(s[3],2)⊕GM(s[2],1)⊕GM(s[1],1)⊕GM(s[0],3);  

 

s'[0]   =   GM(s[0],2)   ⊕   s[3]   ⊕   s[2]   ⊕   GM(s[1],3);  

s'[1]   =   GM(s[1],2)   ⊕   s[0]   ⊕   s[3]   ⊕   GM(s[2],3);  

s'[2]   =   GM(s[2],2)   ⊕   s[1]   ⊕   s[0]   ⊕   GM(s[3],3);  

s'[3]   =   GM(s[3],2)   ⊕   s[2]   ⊕   s[1]   ⊕   GM(s[0],3);  

 

 

 

s'[0]   =   GM(s[0],2)   ⊕   s[3]   ⊕   s[2]   ⊕   GM(s[1],2)⊕s[1];  

s'[1]   =   GM(s[1],2)   ⊕   s[0]   ⊕   s[3]   ⊕   GM(s[2],2)⊕s[2];  

s'[2]   =   GM(s[2],2)   ⊕   s[1]   ⊕   s[0]   ⊕   GM(s[3],2)⊕s[3];  

s'[3]   =   GM(s[3],2)   ⊕   s[2]   ⊕   s[1]   ⊕   GM(s[0],2)⊕s[0]  

 

s'[0]   =   GM(s[0]⊕   s[1],2)   ⊕   s[3]   ⊕   s[2]   ⊕   s[1];  

s'[1]   =   GM(s[1]⊕   s[2],2)   ⊕   s[0]   ⊕   s[3]   ⊕   s[2];  

s'[2]   =   GM(s[2]⊕   s[3],2)   ⊕   s[1]   ⊕   s[0]   ⊕   s[3];  

s'[3]   =   GM(s[3]⊕   s[0],2)   ⊕   s[2]   ⊕   s[1]   ⊕   s[0];  

 

Additionally,   Multiplication   by   2   in   GF(2 8 )   is   multiplication   by   x   (binary   {00000010}   or   hexadecimal  
{02}). (NIST   2001)    We   now   explain   how   multiplication   by   x   is   implemented   as   a   left   shift   and   a  
subsequent   conditional   bitwise   XOR   with   {1b}. (NIST   2001)     Multiplying   binary   polynomials   b(x)   and   x  
produces: . (NIST   2001)    The   result   x   •   b(x)   in   GF(2 8 )   is x x x x x x x xb7

8 + b6
7 + b5

6 + b4
5 + b3

4 + b2
3 + b1

2 + b0  
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then   obtained   by   reducing   the   above   result   modulo   m(x),   see   Section   7.8. (NIST   2001)     To   determine   if  
such   reduction   is   necessary   we   perform   the   following   conditional   check.   If   b7   =   0,   the   result   is  
already   in   reduced   form,   If   b7   =   1,   we   perform   reduction   by   XOR   of   the   polynomial   m(x). (NIST   2001)  

 

multiplication   by   x,   implemented   by   left   shift.  

 

A   bitmask   is   used   to   determine   if   b 7    =1  

If   so   ,   we   perform   reduction   by   m(x)  

 

 

Simplify   by   : M (s[n], ) xt(s[n])  G 2 =   

This   is   the   AES   operation   xtime(), (NIST   2001)   

for   which   we   #define   xt(x)  

((a   &   0X80)   ?   ((a   <<   1)   ⊕   0X1b)   :   (a   <<   1))  

 

 

temporary   values   reduce   load/arithmetic   ops   

t0   =   s[0]   ⊕   s[1]; t2   =   s[2]   ⊕   s[3];  

t1   =   s[1]   ⊕   s[2]; t3   =   s[3]   ⊕   s[0];  

t   =   t0   ⊕   t1;  

 

[c] s[c] < 1;  b =  <   

 

f (s[c] & 0X80)  i  

    [r] ⊕ 0X1b;  b =   

 

 

s'[0]   =   xt(s[0]⊕   s[1],2)   ⊕   s[3]   ⊕   s[2]   ⊕   s[1];  

s'[1]   =   xt(s[1]⊕   s[2],2)   ⊕   s[0]   ⊕   s[3]   ⊕   s[2];  

s'[2]   =   xt(s[2]⊕   s[3],2)   ⊕   s[1]   ⊕   s[0]   ⊕   s[3];  

s'[3]   =   xt(s[3]⊕   s[0],2)   ⊕   s[2]   ⊕   s[1]   ⊕   s[0];  

 

 

s'[0]   =   s[0]   ⊕   xt(t0)   ⊕   t;  

s'[1]   =   s[1]   ⊕   xt(t1)   ⊕   t;  

s'[2]   =   s[2]   ⊕   xt(t2)   ⊕   t;  

s'[3]   =   s[3]   ⊕   xt(t3)   ⊕   t;  
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9.6   :    InvMixColumns   
 

InvMixColumns(State)  

begin  

    byte   t[4]  

    for   c   =   0   to   3  

       for   r   =   0   to   3  

          t[r]   =   state[r,c]  

       end   for  

       for   r   =   0   to   3  

          state[r,c]   =   

          GM(0x0E,   t[r])   xor  

          GM(0x0B,   t[(r   +   1)   mod   4])   xor  

          GM(0x0D,   t[(r   +   2)   mod   4])   xor  

          GM(0x09,   t[(r   +   3)   mod   4])   xor  

       end   for  

    end   for  

end  

Figure   40  

static   void   InvMixColumns(State*   State)   {  

unsigned   char   r,   t0,   t1,   t2,   t3;  

 

for   (r   =   0;   r   <   4;   ++r)   {  

    t0   =   State[0];   t1   =   State[1];  

    t2   =   State[2];   t3   =   State[3];  

 

    State[0]=GM_E[t0]^GM_9[t3]^GM_D[t2]^GM_B[t1];  

    State[1]=GM_E[t1]^GM_9[t0]^GM_D[t3]^GM_B[t2];  

    State[2]=GM_E[t2]^GM_9[t1]^GM_D[t0]^GM_B[t3];  

    State[3]=GM_E[t3]^GM_9[t2]^GM_D[t1]^GM_B[t0];  

    }  

}  

 

 

 

Figure   41  

 

The   InvMixColumns()   transformation   sequentially   processes   each   of   the   four   State   columns  
denoted   .   InvMixColumns   operates   on   each   of   the   four,   4-byte   word   columns   to c , , c , c }  { 0  c1  2  3  
encompass   all   sixteen   AES   state   values.    The   InvMixColumns   transformation   applies   Modular  
Multiplication   in   Rijndael's   Galois   field.    This   mechanism   is   described   in   full   by   Section   7.9.   Each  
column   is   a   word,   represented   via   four-term   polynomial   with   coefficients   over   GF(2 8 ).     Under   the  
AES,   polynomials   over   GF(2 8 )   are   multiplied   by   fixed   polynomial 

modulo   . (NIST   2001) (x) 0B}x 0D}x 09}x 0E}  a 1− = { 3 + { 2 + { + {  x4 + 1  

 

Figure   42,   below,   shows   how   this   can   be   written   as   the   matrix   multiplication   (x) a(x) (x)  s′ =  ⊗ s
: (NIST   2001)  
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Figure   42  

An   equivalent   system   of   equations   achieves   the   result   of   this   multiplication   shown   by   Figure   43,  
below,   the   four   bytes   in   a   column   are   solved   for   by   the   following: (NIST   2001)   

 

  

Figure   43  

 

Rather   than   perform   Galois   Field   multiplication   directly,   AES   implementations   have   previously  
relied   upon   lookup   tables   to   perform   GF(2 8 )   multiplication.   Necessary   for   the   transformations   of  
the   AES   by   this   method   are   six   identical   tables   each   consisting   of   all   values   in   GF(2 8 ),   stored   in  
256   byte   arrays.   The   members   of   these   tables   are   then   multiplied   by   a   given   constant   in   GF(2 8 ).  
Multiplication   by   the   constants   2   and   3,   are   required   for   encryption.   Multiplication   by   the  
constants   9,   11,   13,   and   14   are   required   for   decryption.   This   particular   implementation   shows  
decryption   by   table.   Required   are   the   values   shown   below   by   Tables   25,   26,   27,   28,   which  
depicts   multiplication   of   the   constants   9,   11,   13,   and   14,   respectively.   For   example,   to   achieve  
multiplication   of   the   value   n   by   9   in   GF(2 8 )    via   a   table   array,    the   result   r,   is   generally   obtained:  
yte result GM9[n];  b =   

 

  

125  



 

M_9[n]  G  y  
00  01  02  03  04  05  06  07  08  09  0a  0b  0c  0d  0e  0f  

x  

00  00  09  12  1b  24  2d  36  3f  48  41  5a  53  6c  65  7e  77  
10  90  99  82  8b  b4  bd  a6  af  d8  d1  ca  c3  fc  f5  ee  e7  
20  3b  32  29  20  1f  16  0d  04  73  7a  61  68  57  5e  45  4c  
30  ab  a2  b9  b0  8f  86  9d  94  e3  ea  f1  f8  c7  ce  d5  dc  
40  76  7f  64  6d  52  5b  40  49  3e  37  2c  25  1a  13  08  01  
50  e6  ef  f4  fd  c2  cb  d0  d9  ae  a7  bc  b5  8a  83  98  91  
60  4d  44  5f  56  69  60  7b  72  05  0c  17  1e  21  28  33  3a  
70  dd  d4  cf  c6  f9  f0  eb  e2  95  9c  87  8e  b1  b8  a3  aa  
80  ec  e5  fe  f7  c8  c1  da  d3  a4  ad  b6  bf  80  89  92  9b  
90  7c  75  6e  67  58  51  4a  43  34  3d  26  2f  10  19  02  0b  
a0  d7  de  c5  cc  f3  fa  e1  e8  9f  96  8d  84  bb  b2  a9  a0  
b0  47  4e  55  5c  63  6a  71  78  0f  06  1d  14  2b  22  39  30  
c0  9a  93  88  81  be  b7  ac  a5  d2  db  c0  c9  f6  ff  e4  ed  
d0  0a  03  18  11  2e  27  3c  35  42  4b  50  59  66  6f  74  7d  
e0  a1  a8  b3  ba  85  8c  97  9e  e9  e0  fb  f2  cd  c4  df  d6  
f0  31  38  23  2a  15  1c  07  0e  79  70  6b  62  5d  54  4f  46  

 
Table   25  

 
 

M_B[n]  G  y  
00  01  02  03  04  05  06  07  08  09  0a  0b  0c  0d  0e  0f  

x  

00  00  0b  16  1d  2c  27  3a  31  58  53  4e  45  74  7f  62  69  
10  b0  bb  a6  ad  9c  97  8a  81  e8  e3  fe  f5  c4  cf  d2  d9  
20  7b  70  6d  66  57  5c  41  4a  23  28  35  3e  0f  04  19  12  
30  cb  c0  dd  d6  e7  ec  f1  fa  93  98  85  8e  bf  b4  a9  a2  
40  f6  fd  e0  eb  da  d1  cc  c7  ae  a5  b8  b3  82  89  94  9f  
50  46  4d  50  5b  6a  61  7c  77  1e  15  08  03  32  39  24  2f  
60  8d  86  9b  90  a1  aa  b7  bc  d5  de  c3  c8  f9  f2  ef  e4  
70  3d  36  2b  20  11  1a  07  0c  65  6e  73  78  49  42  5f  54  
80  f7  fc  e1  ea  db  d0  cd  c6  af  a4  b9  b2  83  88  95  9e  
90  47  4c  51  5a  6b  60  7d  76  1f  14  09  02  33  38  25  2e  
a0  8c  87  9a  91  a0  ab  b6  bd  d4  df  c2  c9  f8  f3  ee  e5  
b0  3c  37  2a  21  10  1b  06  0d  64  6f  72  79  48  43  5e  55  
c0  01  0a  17  1c  2d  26  3b  30  59  52  4f  44  75  7e  63  68  
d0  b1  ba  a7  ac  9d  96  8b  80  e9  e2  ff  f4  c5  ce  d3  d8  
e0  7a  71  6c  67  56  5d  40  4b  22  29  34  3f  0e  05  18  13  
f0  ca  c1  dc  d7  e6  ed  f0  fb  92  99  84  8f  be  b5  a8  a3  

 
Table   26  
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M_D[n]  G  y  
00  01  02  03  04  05  06  07  08  09  0a  0b  0c  0d  0e  0f  

x  

00  00  0d  1a  17  34  39  2e  23  68  65  72  7f  5c  51  46  4b  
10  d0  dd  ca  c7  e4  e9  fe  f3  b8  b5  a2  af  8c  81  96  9b  
20  bb  b6  a1  ac  8f  82  95  98  d3  de  c9  c4  e7  ea  fd  f0  
30  6b  66  71  7c  5f  52  45  48  03  0e  19  14  37  3a  2d  20  
40  6d  60  77  7a  59  54  43  4e  05  08  1f  12  31  3c  2b  26  
50  bd  b0  a7  aa  89  84  93  9e  d5  d8  cf  c2  e1  ec  fb  f6  
60  d6  db  cc  c1  e2  ef  f8  f5  be  b3  a4  a9  8a  87  90  9d  
70  06  0b  1c  11  32  3f  28  25  6e  63  74  79  5a  57  40  4d  
80  da  d7  c0  cd  ee  e3  f4  f9  b2  bf  a8  a5  86  8b  9c  91  
90  0a  07  10  1d  3e  33  24  29  62  6f  78  75  56  5b  4c  41  
a0  61  6c  7b  76  55  58  4f  42  09  04  13  1e  3d  30  27  2a  
b0  b1  bc  ab  a6  85  88  9f  92  d9  d4  c3  ce  ed  e0  f7  fa  
c0  b7  ba  ad  a0  83  8e  99  94  df  d2  c5  c8  eb  e6  f1  fc  
d0  67  6a  7d  70  53  5e  49  44  0f  02  15  18  3b  36  21  2c  
e0  0c  01  16  1b  38  35  22  2f  64  69  7e  73  50  5d  4a  47  
f0  dc  d1  c6  cb  e8  e5  f2  ff  b4  b9  ae  a3  80  8d  9a  97  

 
Table   27  

 

M_E[n]  G  y  
00  01  02  03  04  05  06  07  08  09  0a  0b  0c  0d  0e  0f  

x  

00  00  0e  1c  12  38  36  24  2a  70  7e  6c  62  48  46  54  5a  
10  e0  ee  fc  f2  d8  d6  c4  ca  90  9e  8c  82  a8  a6  b4  ba  
20  db  d5  c7  c9  e3  ed  ff  f1  ab  a5  b7  b9  93  9d  8f  81  
30  3b  35  27  29  03  0d  1f  11  4b  45  57  59  73  7d  6f  61  
40  ad  a3  b1  bf  95  9b  89  87  dd  d3  c1  cf  e5  eb  f9  f7  
50  4d  43  51  5f  75  7b  69  67  3d  33  21  2f  05  0b  19  17  
60  76  78  6a  64  4e  40  52  5c  06  08  1a  14  3e  30  22  2c  
70  96  98  8a  84  ae  a0  b2  bc  e6  e8  fa  f4  de  d0  c2  cc  
80  41  4f  5d  53  79  77  65  6b  31  3f  2d  23  09  07  15  1b  
90  a1  af  bd  b3  99  97  85  8b  d1  df  cd  c3  e9  e7  f5  fb  
a0  9a  94  86  88  a2  ac  be  b0  ea  e4  f6  f8  d2  dc  ce  c0  
b0  7a  74  66  68  42  4c  5e  50  0a  04  16  18  32  3c  2e  20  
c0  ec  e2  f0  fe  d4  da  c8  c6  9c  92  80  8e  a4  aa  b8  b6  
d0  0c  02  10  1e  34  3a  28  26  7c  72  60  6e  44  4a  58  56  
e0  37  39  2b  25  0f  01  13  1d  47  49  5b  55  7f  71  63  6d  
f0  d7  d9  cb  c5  ef  e1  f3  fd  a7  a9  bb  b5  9f  91  83  8d  

 

Table   28  
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9.7   :   AddRoundKey  

AddRoundKey(State,   RoundKey)  

begin  

for   i   =   0   step   1   4*Nb   

State i    XOR   RoundKey i  
end   for  

end  

 

 

 

Figure   44  

static   void   AddRoundKey(unsigned   char   round,  
State*   State,unsigned   char*   RoundKey)   {  

unsigned   char   r,   c;  

    for   (r   =   0;   r   <   4;   ++r)   {  

       for   (c   =   0;   c   <   4;   ++c)   {  

          (*State)[r][c]   ̂ =   

             RoundKey[(round*Nb*4)   +   (r*Nb)   +   c];  

       }  

    }  

}  

Figure   45  

The   AddRoundKey   function   performs   a   bitwise   exclusive   or   between   the   State   and   a   Round  
Key. (NIST   2001)    Each   Round   Key   is   a   portion   of   the   key   schedule,   generated   by   the   KeyExpansion()  
function,   a   4-byte   word   vector. (NIST   2001)    A   Round   Key   consists   of     words,   where     is   the bN bN  
number   of   words   in   a   cipher   block,     by   the   specification   of   the   AES.   Round   Key   addition bN = 4  
occurs   prior   to   the   first   round,   and   continues   when   1   ≤   round   ≤   Nr. (NIST   2001)    Each   word   of   the  
Round   Key   is   XOR'ed   into   the   columns   of   the   State:  

 

 s , , , } w  { s , , s , s }               for 0 ≤ c b   and   0 ≤ round ≤ Nr{  
0, c s 

1, c s
 
2, c s

 
3, c ⊕  round Nb+c*

=  ′
0, c  s′1, c  ′2, c  ′3, c < N  

 

Where   represents   a   State   byte,     represents   a   given   key   schedule   word   and   is   a sr, c wi  s′r, c  
transformed   byte.   The   mechanism   of   this   operation   is   depicted   diagrammatically   by   Figure   46,  
below.   AddRoundKey(),   described   above,   is   equivalent   to   the   XOR   operation   and   is   thus   its   own  
inverse. (NIST   2001)  
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Figure   46   
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9.8   :   InvCipher  
 

Transformations   of   the   AES   Cipher()   are   decrypted   through   round   and   function   inversion   by  
InvCipher().   The   same   number   of   round   iterations   are   used. (NIST   2001)   

 

InvCipher(State,RoundKey)  

begin  

    AddRoundKey(State,   RoundKey)  

    for   i   =   1   to   Nr  

       InvRound(State,   RoundKey+Nb*i);  

       InvFinalRound(State,   RoundKey+Nb*Nr);  

    end   for  

 

InvRound(State,RoundKey)  

begin  

    InvShiftRows(State);  

    InvSubBytes(State);  

    AddRoundKey(round,   State,   RoundKey);  

    InvMixColumns(State);  

end  

 

InvFinalRound(State,   RoundKey)  

begin  

    InvShiftRows(State);  

    InvSubBytes(State);  

    AddRoundKey(round,   State,   RoundKey);  

end  

 

Figure   47  

void   InvCipher(State*   State,   unsigned   char*  
RoundKey)  

{  

unsigned   char   round   =   0;  

 

AddRoundKey(Nr,   State,   RoundKey);  

 

for   (round   =   (Nr   -   1);   round   >   0;   round--)   {  

    InvShiftRows(State);  

    InvSubBytes(State);  

    AddRoundKey(round,   State,   RoundKey);  

    InvMixColumns(State);  

    }  

 

InvShiftRows(State);  

InvSubBytes(State);  

AddRoundKey(0,   State,   RoundKey);  

}  

 

 

 

 

 

Figure   48  
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The   AES   InvCipher()   implements   a   round   function   of   four   byte-oriented   transformations: (NIST   2001)   

InvSubBytes()   individual   byte   substitution   using   the   InvS-Box   lookup   table   

InvShiftRows()   shifts   each   State   array   rows   by   a   unique   offset   

InvMixColumns()   mixes   each   State   array   column   

AddRoundKey()   adds   the   randomized   Round   Key   to   the   State   

 

An   initial   AddRoundKey   precedes   the   iteration   of   Nr-1   rounds,    while   the   final   round   does   not  
include   the   InvMixColumns()   transformation.   These   functions   operate   on   arrays   provided   by   the  
State   and   RoundKey   pointers.   RoundKey   is   the   key   schedule   generated   by   the   KeyExpansion()  
function,   a   vector   consisting   of   4-byte   words.     RoundKey   words   are   used   each   round bN  
iteration.   The   State   transformations   referenced   above   are   defined   in   the   same   sections   as   their  
inverses   except   for   InvMixColumns   which   is   Section   9.6.  
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Section   10   :   Block   Cipher   Modes   of   Operation  

10.1   :    Probabilistic   Encryption  
 

Individually   a   block   cipher   serves   to   provide   message   confidentiality,   protection   from  
unauthorized   access. (Paar   &   Pelzi   2009)    Unauthorized   access   in   this   case   equates   to   adversaries  
without   the   block   ciphers   secret   key. (Paar   &   Pelzi   2009)    However,   a   block   cipher   is   only   defined   for   a  
single   block   size   transformation   per   key.   In   practice,   the   size   of   a   message   is   larger   than   the  
block   size,   often   much   larger.   Secure   use   of   a   block   cipher   would   entail   impractical   key  
generation   and   management   efforts.   It   is   because   of   this   that    block   ciphers   are   classified   as  
cryptographic   primitives,   to   be   used   as   a   component   in   a   secure   cryptosystem. (Van   Tilborg   &   Jajodia,   2011)  

 

Standardised   block   cipher   modes   of   operation   were   developed   to   extend   block   cipher   capability.  
While   their   applications   are   many,   the   few   focused   by   this   document   are   procedures   that   allow   a  
generic   block   cipher   to   transform   data   allocations   larger   than   a   single   block   and   achieve  
probabilistic   results   under   a   fixed   key. (Van   Tilborg   &   Jajodia,   2011)    Of   primary   concern   when   encrypting  
with   a   constant   key,   is   the   tendency   for   equal   plaintext   blocks   to   share   some   non-random  
correspondence. (Van   Tilborg   &   Jajodia,   2011)     To   be   semantically   secure,   protecting   all   plaintext  
information,   an   encryption   algorithm's   execution   must   be   probabilistic. (Housley   2004)    While   we  
discussed   deterministic   execution   in   Section   2.2,   a    probabilistic   encryption   method   is   defined   as  
a   process   that   introduces   randomness   to   every   instantiation.   In   the   case   of   block   cipher  
algorithms,   probabilistic   encryption   ensures   that   identical   plaintexts   under   a   constant   key   result  
in   unique   ciphertexts,   masking   data   patterns.    An   example   of   these   patterns   is   illustrated. (Housley  

2004)  

 

To   achieve   probabilistic   encryption   we   must   provide   randomness   for   each   block   cipher  
instantiation.   As   input,   along   with   the   message   and   key,   most   modes   require   an    initialization  
vector   (IV) . (Housley   2004)    An   IV   is   a   block-sized   bit   vector,   comprising   a   unique   binary   sequence,  
used   to   randomize   encryption   under   a   constant   key. (Kuo-Tsang   Huang   Chiu   Shen   2013)    When   implemented   in  
an   established   mode   of   operation,   IVs   eliminate   the   need   for   a   slower   re-keying   process. (Kuo-Tsang  

Huang   Chiu   Shen   2013)    As   they   serve   a   different   purpose,   Initialization   vectors   have   different   security  
requirements   than   keys.   Most   apparent   is   the   fact   that   IVs   do   not   need   to   be   secret. (Kuo-Tsang   Huang  

Chiu   Shen   2013)    Of   greatest   importance   is   that   IV's   must   not   be   used   reused   with   the   same   key,   and,  
for   some   modes,   IV   generation   must   be   unpredictable. (Kuo-Tsang   Huang   Chiu   Shen   2013)  

 

Additionally,   some   modes   increase   block   cipher   capability   to   provide   properties   which  
complement   the   security   of   the   underlying   block   cipher.   A   common   requirement   are    forms   of  
encryption   which   assure   message   confidentiality   and   authenticity. (Dworkin   2001)    Message  
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authenticity   i s   a   property   held   by   messages   for   which   a   receiver   can   verify   unmodified  
transmission   from   a   known   origin. (Dworkin   2001)    Many   modes   of   operation   have   been   defined,   as  
such   their   security   qualities   and   use   cases   vary.   NIST   has   defined   five   modes   of   operation   for  
AES   and   other   FIPS-approved   block   ciphers.    Each   of   these   modes   has   different  
characteristics.    The   five   modes   are:   ECB   (Electronic   Code   Book),   CBC   (Cipher   Block  
Chaining),   CFB   (Cipher   FeedBack),   OFB   (Output   FeedBack),   and   CTR   (Counter). (Housley   2004)  
Care   must   be   taken   during   implementation   and   application   to   maintain   security   or   complete  
compromise   is   risked. (Dworkin   2001)    This   document   uses   ECB,   CBC,   and   CTR   to   serve   as   examples  
of   operation   mode   variety,   

  

133  



10.2   :   Padding   
 

Block   cipher   primitives   are   defined   to   operate   on   fixed   size   plaintext   blocks. (Dworkin   2001)    While  
block   ciphers   may   be   capable   of   operating   on   blocks   of   varied   size,   block   size   is   a   constant  
during   individual   execution   instances. (Dworkin   2001)    Plaintext   that   is   not   a   multiple   of   the   current  
block   size   must   be   padded. (Menezes   Van   Oorshot   &   Vanstone   1997)    Padding   is   the   addition   of   plaintext   material  
such   that   message   size   is   a   multiple   of   the   cipher   block   size, (Menezes   Van   Oorshot   &   Vanstone   1997)    many  
methods   exist. (Ferguson   Schneier   2003)    Two   of   the   examples   outlined   by   this   document,   ECB   and   CBC,  
require   that   final   blocks   be   padded   before   encryption. (Dworkin   2001)    We   will   explore   a   few   padding  
methods   of   trivial   complexity   below.   

 

The   simplest   padding   methods   append     bytes   to   the   length   of   the   plaintext   ,   such   that   their a p  
total   is   ,   the   cipher   block   size   .   These     bytes   have   designated   values   such   that b bp + a = x a  
their   removal   is   procedural.   Zero   padding   appends     {00}   byte   values: a   

 

Padding   an   8   byte   block:    ...   |   PP   PP   PP   PP   PP   PP   PP   PP   |   PP   PP   PP   PP    00   00   00   00    |  

 

Zero   padding   is   unusable   on   plaintexts   ending   in   one   or   more   zero   byte   values.    The   boundary  
between   the   plaintext   and   the   pad   string   is   ambiguous   as   "trailing   0-bits   of   the   original   data  
cannot   be   distinguished   from   those   added   during   padding." (Menezes   Van   Oorshot   &   Vanstone   1997   p.   335)     The  
{00}   value   in   Zero   padding   can   be   replaced   with   any   byte   value.   This   method   is   acceptable,   and  
efficient,   if   recipients   are   able   to   know   the   message   length. (Menezes   Van   Oorshot   &   Vanstone   1997)  

 

The   method   is   similar   in   concept,   but   solves   the   boundary   issue.   A   predefined   byte   value   is  
appended   to   mark   the   plaintext   boundary,   then   the   remaining     bytes   are   zero   padded. a )  ( − 1  
ISO/IEC   7816-4:2005   defines   this   method   to   be   used   for   8   byte   smart   cards   when   the   boundary  
byte   is   0X80.  

 

Padding   an   8   byte   block:     ...   |   PP   PP   PP   PP   PP   PP   PP   PP   |   PP   PP   PP   PP    80   00   00   00    |  

 

If   the   message   length   is   a   multiple   of   the   cipher   block   size,   an   entire   padding   block   with   be  
appended   to   ensure   the   plaintext   boundary   can   be   determined. (Menezes   Van   Oorshot   &   Vanstone   1997)    This   is  
due   to   cases   where   the   plaintext   to   be   padded   is   the   block   size   and   the   final   plaintext   byte   is  
equal   to   the   value   of   the   boundary   value. (Menezes   Van   Oorshot   &   Vanstone   1997)    Without   appending   an   entire  
block,   the   final   byte   is   just   as   likely   to   be   a   padding   boundary   byte   as   it   is   to   be   valid  
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plaintext. (Menezes   Van   Oorshot   &   Vanstone   1997)    Bytes   to   be   stripped   from   a   decrypted   plaintext   are   the  
boundary   value   and   any   {00}   bytes   that   follow.  

 

Our   final   example   has   been   standardized   for   cryptographically   protected   messages.   This  
padding   method   is   described   in    RFC    5652 ,   Cryptographic   Message   Syntax   (CMS),   Section   6.3.  
CMS   has   been   thoroughly   reviewed   and   is   approved   for   used   to   digitally   sign,   digest,  
authenticate,   or   encrypt   arbitrary   message   content. (Housley   2009)    The   padding   string   consists   of   a  
bytes   of   value   ,   where   0   ≤     <   256,   This   method   is   only   well   defined   for   values   that   can   be a a  
expressed   by   a   byte. (Housley   2009)   

 

Padding   an   8   byte   block:     ...   |   PP   PP   PP   PP   PP   PP   PP   PP   |   PP   PP   PP   PP    04   04   04   04    |  

 

As   with   the   previous   method,   if   the   message   is   a   multiple   of   the   block   size,   an   entire   plaintext  
block   will   be   appended   to   provide   a   defined   plaintext   boundary.   The   number   of   bytes   to   be  
stripped   from   decrypted   plaintext   is   equal   to   the   value   of   the   final   byte. (Housley   2009)  

Modes   that   require   padding   can   compromise   the   security   benefits   provided   by   the   underlying  
block   cipher.   The   addition   of   a   padding   transformation   introduces   the   possibility   of   attacks   where  
by   adversaries   use   information   leaked   about   the   padding   process   to   compromise   the   underlying  
block   cipher. (Fedler   2013)    The   description   of   such   a   process   is   outside   the   scope   of   this   document.  
Contemporary   padding   procedures   do   not   require   padding   as   ciphertext   is   made   equal   to   the  
message   in   size   with   negligible   complexity   increase.   Methods   like   ciphertext   stealing,   which  
provides   an   alternative   specification   to   the   popular   CBC   mode   which   are   not   detailed   by   this  
document. (Kuo-Tsang   Huang   Chiu   Shen   2013)   

 

A   security   measure   within   the   scope   of   this   document   details   the   use   of   a   "streaming"   mode  
where   by   the   plaintext   length   does   not   need   to   be   a   multiple   of   the   blocksize,   the   example  
outlined   by   this   document   is   CTR. (Dworkin   2001)    Streaming   block   cipher   modes,   like   stream   ciphers  
themselves,   do   not   require   padding. (Dworkin   2001)    Such   modes   use   the   block   cipher   to   generate   a  
stream   of   pseudo   random   data   to   be   xored   with   the   plaintext. (Dworkin   2001)    Similar   to   the   One   Time  
Pad,   the   random   data   required   is   equal   to   the   size   of   the   message,   rather   than   a   multiple   of   the  
block   size.   Because   of   this,   streaming   modes   are   used   in   applications   where   it   is   inefficient   to  
add   padding.  
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10.3   :   Electronic   Codebook   (ECB)   
 

ECB   is   the   most   simplistic   standardized   encryption   mode. (Van   Tilborg   &   Jajodia,   2011)    A   message   of   size  
  is   divided   into   a   number   of   size     plaintext   blocks,   where     is   the   cipher   block   size.   Each m n n  

plaintext   block   ,   is   encrypted   with   a   constant   key ,   to   produce   ciphertext   block   . (Paar   &   Pelzi   2009) pi k ci  
ECB   mode   is   its   own   inverse. (Dworkin   2001)  

 

Execution  

● , k)  E(p0   = c0 A   plaintext   block   ,   is   encrypted   with   the   key   ,   to   produce   ciphertext p0 k  
block   c0  

● , k)  E(pi   = ci Subsequent   blocks   ,   are   encrypted   with   key     to   produce   ciphertext pi k  
blocks   ci  

 

Where     is   the   block   index ,   and     is   the   number   of   size     plaintext   blocks   such   that i  ≤ i  0 < q q n  
. (Paar   &   Pelzi   2009)     As   there   is   no   interaction   between   cipher   execution   on   individual   blocks, nq = m  

thus,   there   is   no   dependence   between   the   transformation   of   a   given   message   block   and   any  
subsequent   operations. (Housley   2004)    Due   to   this   lack   of   dependence,   ECB   is   possible   to   implement  
in   parallel   and   transcription   errors   affect   only   the   containing   block. (Paar   &   Pelzi   2009)    We   will   see   that  
block   cipher   modes   with   dependence   between   block   transformations   are   impossible   to  
implement   in   parallel   and   tend   to   cascade   transcription   errors   such   that   a   fault   in   one   bit   may  
invalidate   all   subsequent   transformations. (Paar   &   Pelzi   2009)  

 

Given   a   particular   input,   a   deterministic   procedure   will   always   execute   the   same   sequence   of  
states,   producing   identical   output. (Van   Tilborg   &   Jajodia,   2011)     By   ECB,   if   two   equal   plaintext   blocks   are  
encrypted   under   the   same   key,   the   corresponding   cipher   operations   and   ciphertext   blocks   will  
be   identical,   thusly   ECB   mode   is   deterministic. (Housley   2004)    The   mode's   name   originates   from   the  
fact   that,   for   a   given   key,   a   codebook   could   be   created,   mapping   all   possible   of   ciphertexts   for  
all   possible   plaintext   blocks. (Dworkin   2001)    This   reduces   block   transformations   to   a   table   lookup,   ",  
analogous   to   the   assignment   of   code   words   in   a   codebook" (Dworkin   2001   p.   9) ,   the   type   used   for  
decades   by   the   financial   industry. (Paar   &   Pelzi   2009)  

 

In   general,   deterministic   ciphers   are   considered   insecure,   ECB   mode   should   not   be   used  
without   thorough   consideration. (Housley   2004)    This   insecurity   is   due   to   a   lack   of   diffusion,   data  
patterns   of   the   underlying   message   can   be   seen   in   ECB   mode   output,   resulting   from   identical  
plaintext   blocks   corresponding   to   identical   ciphertext   blocks. (Housley   2004)    A   common   example   is  
the   use   of   ECB   to   encrypt   an   uncompressed   bitmap   image, (Kuo-Tsang   Huang   Chiu   Shen   2013)    as   seen   in  
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the   left   most   image   of   Figure   49   below.   Bitmap   pixels   are   represented   by   a   defined   byte   pattern,  
areas   with   equal   pixel   values   result   in   equal   pixel   values   upon   ECB   encryption   as   represented  
in   the   middle   image   of   Figure   50   below. (Kuo-Tsang   Huang   Chiu   Shen   2013)    In   this   sense   ECB   does   not  
achieve   basic   message   confidentiality. (Kuo-Tsang   Huang   Chiu   Shen   2013)    When   a   probabilistic   encryption  
mode   is   used,   encryption   of   the   equal   pixel   values   result   in   distinct   pixel   values   after   encryption  
as   seen   in   the   right   most   image   of   Figure   51   below. (Kuo-Tsang   Huang   Chiu   Shen   2013)  

   

Figure   49   Figure   50  Figure   51  

In   practice,   ECB   mode,   and   deterministic   use   of   a   block   cipher   in   general,   can   introduce   the  
possibility   of   replay   attacks,   when   proof   of   identity   is   in   the   form   of   an   encrypted   value.   An  
eavesdropper   may   simply   replay   the   encrypted   value   rather   than   decode   any   plaintext. (Kuo-Tsang  

Huang   Chiu   Shen   2013)   
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10.4   :   Cipher   Block   Chaining   Mode   (CBC)  
 

CBC   uses   block   chaining   to   provide   probabilistic   encryption   when   the   key   and   message   are  
constant. (Dworkin   2001)    In   this   way,   the   randomness   supplied   to   the   encryption   function   by   the   IV   is  
chained   throughout   the   execution. (Dworkin   2001)    CBC   mode   achieves   this   by   requiring   a   unique,  
random   IV   to   be   XORed   with   the   first   plaintext   before   cipher   operations. (Paar   &   Pelzi   2009)  

 

. IV , k)  E(p0 ⊕    = c0   

A   produced   ciphertext   is   XORed   with   the   subsequent   plaintext   before   input   to   the   cipher  
operation. (Paar   &   Pelzi   2009)  

. , k)  E( pi⊕ ci 1−   = ci   

Execution  

● XOR   the   IV   with   the   first   plaintext   block   p0  

● Encrypt   this   value   with   key   ,   to   produce   ciphertext   block   IV  p0 ⊕  k c0  

● XOR   ciphertext   block   ,   with   the   subsequent   plaintext   block   c0 p1  

● Encrypt   this   value   with   key   ,   to   produce   ciphertext   block    p1 ⊕ c0 k c1  

● XOR   a   subsequent   plaintext   block   ,   with   the   most   recent   ciphertext   block   pi ci 1−  

● Encrypt   their   value   with   key     to   produce   remaining   ciphertext   blocks    pi⊕ ci 1− k ci  

 

As   decryption   is   the   inverse   operation,   the   current   ciphertext   block     is   decrypted   then   the ci  
necessary   value   is   XORed   to   produce   plaintext   block   . (Paar   &   Pelzi   2009) pi  

, k)  D( ci  ⊕ ci 1−  = pi  

 

For   the   initial    block   ,   the   IV   is   used   as   the   ciphertext   block   ,   to   produce   plaintext   . (Paar   & c0 ci 1− p0
 

Pelzi   2009)  

, k) V  D( c0  ⊕ I  = p0  

 

Cipher   Block   Chaining   (CBC)   mode   of   operation   was   patented   in   1976   by   Ehrsam,   Meyer,   Smith  
and   Tuchman,   US   Patent   4074066.   The   IV   is   a   valuable   improvement,   as   even   a   single   bit  
change   causes   operation   of   a   general   block   cipher   to   be   non-deterministic.   To   make   ciphertext,  
produced   with   constant   plaintext   and   key,   non-deterministic,   a   unique,   random   IV   must   be  
provided   for   each   execution. (Housley   2004)    Under   CBC   mode,   each   block   of   plaintext   is   XORed   with  
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the   previously   generated   ciphertext   block   before   it   is   given   as   input   to   the   cipher.   Because   the  
cipher's   operation   on   one   block   is   influenced   by   its   operation   on   another   block,   CBC   mode   is  
said   to   display   chaining   dependency. (Paar   &   Pelzi   2009)  

 

CBC   plaintext   encryption   is   dependant   on   all   previously   processed   plaintext   blocks,   as  
such: (Housley   2004)  

● Encryption   must   be   performed   serially   as   each   operation   provides   a   necessary   unknown  
input.  

● Any   transmission   error   will   be   propagated   throughout,   and   corrupt   following   operations.  

 

CBC   ciphertext   decryption   is   dependant   on   the   value   of   the   previous   ciphertext   block,   as  
such: (Housley   2004)  

● Decryption   is   parallelizable   as   each   operation   relies   on   known   input   values  

● Use   of   an   incorrect   IV   corruptions   the   first   plaintext   block   but   all   others   are   unaffected  

● Any   transmission   error   will   corrupt   only   the   containing   blocks   decryption  
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10.5   :   Counter   Mode   (CTR)  
 

Counter   mode   uses   a   block   cipher   to   generate   a   unique   keystream     composed   of     size   k n c  
blocks,   where     is   the   cipher   block   size,   such   that   . (Dworkin   2001)    This   mode   implements c nc = m  
encryption   to   transform   a   set   of   input   "counters"   into   a   keystream   that   is   then   XORed   with  
plaintext   units   of   equal   location,   resulting   in   the   ciphertext   unit   at   that   location. (Dworkin   2001)    To  
ensure   probabilistic   encryption,   CTR   often   takes   a   random   IV   to   be   combined   with   the  
counter. (Ferdinand   2017)  

 

Execution  

● (v , k) s  E 0  =  0 Encrypt   counter   value   ,   under   key   ,   to   produce   keystream   block   v0 k s0  

●  p0 ⊕ s0 = c0  XOR   plaintext   block     and   keystream   block   ,   producing   cipherblock p0 s0 c0  

● v0 → v1 Update   the   counter   value   v1  

● (v , k) s  E i  =  i Encrypt   subsequent   values   ,   by   key   ,   to   produce   keystream   block   vi k si  

●  pi⊕ si = ci XOR   plaintext   block     and   keystream   block   ,   producing   cipherblock pi si ci  

 

Where     is   the   block   index ,   and     is   the   number   of   size     plaintext   blocks   such   that i  ≤ i  0 < q q n  
. (Paar   &   Pelzi   2009) nq = m  

 

Counter   (CTR)   mode   of   operation   was   developed   by   Whitfield   Diffie   and   Martin   Hellman   and  
introduced   by   the   IEEE   in   1979. (Diffie   Hellman   1979)    To   generate   the   pseudo   random   keystream,   the  
mode   uses   successive   counter   values   in   place   of   a   random   IV. (Housley   2004)    The   counter   function  
used   for   CTR   may   be   derived   a   number   of   ways.   Any   function   is   valid   so   long   as   it   produces   a  
sequence   of   sufficient   length   such   that   a   given   key   is   never   used   with   the   same   counter  
values. (Housley   2004)    Common   is   a   simple   increment   by   one   counter   XORed   with   a   unique   IV. (Housley  

2004)    Use   of   a   deterministic   input   function   is   only   a   valid   concern   if   the   underlying   cipher   is   weak,  
it   is   not   the   responsibility   of   a   mode   of   operation   to   try   to   compensate. (Lipmaa   Rogaway   Wagner   2000)  

 

Two   cases   exist   with   a   deterministic   input   function,   like   increment   by   one,   to   resist  
chosen-plaintext   attacks   by   which   an   adversary   controls   the   IV–counter   pair   to   cause   a  
collision. (Ferdinand   2017)    A   random   IV   may   be   combined   with   each   sequence   value   by   an   invertible  
operation   to   produce   the   counter   value,   this   maintains   properties   of   randomness. (Ferdinand   2017)    A  
non-random   IV   may   be   used   if   concatenated   with   the   sequence   value   by   placing   the   former   in  
the   first   half   and   the   latter   in   the   second. (Ferdinand   2017)    A   128   bit   example   concatenates   a   64-bit  
sequence   value   to   a   64-bit   IV   to   produce   each   128-bit   counter   block. (Ferdinand   2017)    While   many  
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other   methods   exist,   it   is   ultimately   the   user’s   responsibility   to   ensure   that   it   is   impossible,   or  
highly   improbable,   that   a   counter   value   is   ever   reused   with   the   same   key. (Lipmaa   Rogaway   Wagner   2000)  

 

One   interesting   benefit   is   that   CTR   encryption   is   its   own   inverse   operation. (Paar   &   Pelzi   2009)    The  
decryption   process   produces   an   identical   decryption   key-stream   to   be   utilized   in   the   same   way  
as   encryption. (Paar   &   Pelzi   2009)    CTR   does   not   display   the   chaining   dependency   of   CBC,   allowing  
non-sequential   transformation   or   "random   access"   for   both   encryption   and   decryption. (Housley   2004)  
This   is   because   each   block   uses   the   same   key,   IV,   and   initial   counter   value   such   that   the   nth  
block   may   be   processed   by   taking   the   nth   offset   of   the   initial   counter   value.   As   there   is   no  
dependency   between   cipher   instances,   each   transformation   may   be   executed   in   parallel. (Housley  

2004)    CTR   mode   does   not   propagate   error   of   transmission,   error   in   a   single   bit   will   affect   only   that  
bit   after   transformation. (Housley   2004)    However,   if   the   counter   offset   becomes   invalid,   so   to   will   the  
key   stream   and   resulting   cipher   transformations. (Housley   2004)   
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Conclusions   
 

I   have   learned   a   great   deal   about   the   subjects   that   I   intended.   Having   performed   research   to  
identify   the   properties   associated   with   a   cryptographically   secure   block   cipher   implementation,  
progress   would   entail   work   toward   a   complete   understanding   of   the   supporting   mathematical  
theory   and   their   broader   implications.   Ultimately,   a   further   analysis   to   achieve   a   functional  
knowledge   of   each   of   the   cryptographic   primitives   presented   by   the   taxonomy   in   Figure   5   would  
be   ideal.  

 

The   scope   of   this   report   changed   over   the   course   of   its   execution,   becoming   increasingly   vast.  
As   I   was   unable   to   manage   the   work   that   I   had   set   for   myself,   at   the   suggestion   of   my   Senior  
Project   advisor,   I   placed   work   that   I   could   not   fully   integrate   into   a   future   work   folder   for   pursuit  
after   this   project.  

 

Delayed   work:  

Classical   Ciphers  

Transposition   Ciphers  

Substitution   Ciphers  

Classical   Modular   Ciphers:   Ceaser   and   Affine   Ciphers  

Polygraphic   Substitution:   MixColumns   and   Hill   Ciphers  

 

15   Page   Timeline   of   Communication   and   Cryptographic   Application  

 

Cryptologic   History  

-   Advent   of   Cryptology  

-   Advent   of   Cryptanalysis   and   Frequency   Analysis  

-   Pre   Modern  

WWI:   UK   Room   40,   US   Black   Chamber  

WWII:   Enigma   Machine,   PURPLE,   UK   Bletchley   Park,   US   Sig   Int,   Polish   Cipher   Bureau  

 

 

-   The   DES   Selection   Process   (Submission   Overviews,   Design   Criteria,   Evaluation)  
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-   Public   Key   Cryptography   

-   Diffie–Hellman   Key   Exchange  

-   Pseudorandom   bit   generation  

-   Digital   Signatures  

-   The   RSA   Cryptosystem  

-   Message   authentication   codes  

-   Cryptographic   Hash   Functions  

-   Identification   and   Entity   Authentication  

-   The   AES   Selection   Process   (Submission   Overviews,   Design   Criteria,   Evaluation)  

-   Elliptic-curve   Diffie–Hellman   key   exchange  

-   Post-quantum   cryptography  

 

Public   Key   Mathematics  

-   Modular   Exponentiation  

-   Extended   Euclidean   Algorithm  

-   Discrete   Logarithm   Problem  

-   Elliptic   Curve   Cryptography  

 

Asymmetric   Key   Establishment  

-   Public   Key   Infrastructure  

 

Efficient   GPU   Implementation  

-   Concurrency  

-   Data   Locality  

-   T-Tables  

-   BitSlicing  
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